1. AGREE Next Steps Consortium, AGREE II. Instrument voor de beoordeling van richtlijnen. 2009.
  2. Evert, A.B., et al., Nutrition therapy for adults with diabetes or prediabetes: a consensus report. Diabetes Care, 2019. 42(5): p. 731-754.
  3. Dyson, P., et al., Diabetes UK evidence‐based nutrition guidelines for the prevention and management of diabetes. Diabetic medicine, 2018. 35(5): p. 541-547.
  4. Sievenpiper, J.L., et al., Nutrition therapy. Canadian journal of diabetes, 2018. 42: p. S64-S79.
  5. American Diabetes Association, Introduction: Standards of Medical Care in Diabetes—2020. 2020, Am Diabetes Assoc.
  6. Schünemann, H., The GRADE handbook. 2013: Cochrane Collaboration.
  7. Weaver, C.M. and J.W. Miller, Challenges in conducting clinical nutrition research. Nutrition reviews, 2017. 75(7): p. 491-499.
  8. Vanhoutte, E., C. Faber, and I. Merkies, Statistische significantie of klinische relevantie? Nederlands tijdschrift voor geneeskunde, 2010. 154(A2516): p. A2516.
  9. Voedingscentrum. Voedingswetenschap: soorten onderzoek uitgelegd. 2018; Available from: https://www.voedingscentrum.nl/encyclopedie/voedingswetenschap-soorten-onderzoek-uitgelegd.aspx.
  10. Gezondheidsraad, Voedingsnormen voor vitamines en mineralen voor volwassenen. 2018.
  11. Devaney, B.L. and S.I. Barr, DRI, EAR, RDA, AI, UL: Making sense of this alphabet soup. Nutrition Today, 2002. 37(6): p. 226-232.
  12. Volksgezondheidenzorg.info. Diabetes Mellitus, Cijfers en Context, Huidige situatie. 2019; Available from: https://www.volksgezondheidenzorg.info/onderwerp/diabetes-mellitus/cijfers-context/huidige-situatie.
  13. Barents, E.B., HJG; Bouma, M; Van den Brink-Muinen, A; Dankers, M; Van den Donk, M; Hart, HE; Houweling, ST; IJzerman, RG; Janssen, PGH; Kerssen, A; Palmen, J; Verburg-Oorthuizen, AFE; Wiersma, Tj., NHG-Standaard Diabetes mellitus type 2 (vierde herziening). Huisarts en Wet, 2018. 56(10): p. 512-525.
  14. Rijksinstituut voor Volksgezondheid en Milieu, Percentage metabool syndroom naar leeftijd en geslacht. 2012.
  15. Matthews, D.R., et al., Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 1985. 28(7): p. 412-419.
  16. Song, Y., et al., Insulin sensitivity and insulin secretion determined by homeostasis model assessment and risk of diabetes in a multiethnic cohort of women: the Women's Health Initiative Observational Study. Diabetes care, 2007. 30(7): p. 1747-1752.
  17. Hill, N.R., J.C. Levy, and D.R. Matthews, Expansion of the homeostasis model assessment of β-cell function and insulin resistance to enable clinical trial outcome modeling through the interactive adjustment of physiology and treatment effects: iHOMA2. Diabetes care, 2013. 36(8): p. 2324-2330.
  18. Poortvliet, M., C. Schrijvers, and C. Baan, Diabetes in Nederland. Omvang, risicofactoren en gevolgen, nu en in de toekomst. 2007.
  19. Diabetesfonds. Diabetes in cijfers. 2019  [cited 2020 20-5]; Available from: https://www.diabetesfonds.nl/over-diabetes/diabetes-in-het-algemeen/diabetes-in-cijfers.
  20. Hummelink, E., Scope of epidemiology and daily practice in children with type 1 diabetes in the Netherlands. 2019, Rijksuniversiteit Groningen.
  21. Centraal Bureau voor de Statistiek, Gezondheid en zorggebruik; geslacht, leeftijd, persoonskenmerken[Dataset]. 2018.
  22. Rewers, M. and J. Ludvigsson, Environmental risk factors for type 1 diabetes. The Lancet, 2016. 387(10035): p. 2340-2348.
  23. Seidell, J. and J. Halberstadt, Zorgstandaard obesitas. 2010, Partnerschap Overgewicht Nederland: Amsterdam.
  24. Neuenschwander, M., et al., Role of diet in type 2 diabetes incidence: umbrella review of meta-analyses of prospective observational studies. BMJ (Clinical research ed.), 2019. 366: p. l2368-l2368.
  25. Zheng, Y., S.H. Ley, and F.B. Hu, Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews Endocrinology, 2018. 14(2): p. 88.
  26. Houghton, D., et al., Systematic review assessing the effectiveness of dietary intervention on gut microbiota in adults with type 2 diabetes. Diabetologia, 2018. 61(8): p. 1700-1711.
  27. Özcan, B., et al., High diabetes distress among ethnic minorities is not explained by metabolic, cardiovascular, or lifestyle factors: findings from the Dutch diabetes pearl cohort. Diabetes care, 2018. 41(9): p. 1854-1861.
  28. E. J. de Boer, et al., Voeding van Marokkaanse, Turkse, Surinaamse en autochtone Nederlanders in Amsterdam, R.v.V.e.M. (RIVM), Editor. 2015.
  29. Evert, A.B., American Diabetes Association Guide to Nutrition Therapy for Diabetes. 3 ed. 2017, Arlington, Virginia: American Diabetes Association.
  30. Freire, R., Scientific evidence of diets for weight loss: different macronutrient composition, intermittent fasting, and popular diets. Nutrition, 2020. 69: p. 110549.
  31.  Imamura, F., et al., Effects of saturated fat, polyunsaturated fat, monounsaturated fat, and carbohydrate on glucose-insulin homeostasis: a systematic review and meta-analysis of randomised controlled feeding trials. PLoS medicine, 2016. 13(7): p. e1002087.
  32. Richter, B., et al., Development of type 2 diabetes mellitus in people with intermediate hyperglycaemia. Cochrane Database of Systematic Reviews, 2018(10).
  33. Owen, K. MODY. De portaalsite voor zeldzame ziekten en weesgeneesmiddelen 2014 November 2014 April 2020]; Available from: https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=NL&Expert=552.
  34. Kreider, K.E., The Diagnosis and Management of Atypical Types of Diabetes. The Journal for Nurse Practitioners, 2019. 15(2): p. 171-176. e1.
  35. Franz, M.J., Diabetes Nutrition Therapy: Effectiveness, Macronutrients, Eating Patterns and Weight Management. The American journal of the medical sciences, 2016. 351(4): p. 374-9.
  36. Bantle, J.P., et al., Postprandial glucose and insulin responses to meals containing different carbohydrates in normal and diabetic subjects. New England Journal of Medicine, 1983. 309(1): p. 7-12.
  37. Voedingscentrum. Glycemische Index. 2019; Available from: https://www.voedingscentrum.nl/encyclopedie/glycemische-index.aspx.
  38. World Health Organization, Guideline: sugars intake for adults and children. 2015, World Health Organization.
  39. Namazi, N., B. Larijani, and L. Azadbakht, Low-carbohydrate-diet score and its association with the risk of diabetes: a systematic review and meta-analysis of cohort studies. Hormone and Metabolic Research, 2017. 49(08): p. 565-571.
  40. McEvoy, C.T., et al., A posteriori dietary patterns are related to risk of type 2 diabetes: findings from a systematic review and meta-analysis. Journal of the Academy of Nutrition and Dietetics, 2014. 114(11): p. 1759-1775. e4.
  41. Greenwood, D.C., et al., Glycemic index, glycemic load, carbohydrates, and type 2 diabetes: systematic review and dose-response meta-analysis of prospective studies. Diabetes Care, 2013. 36(12): p. 4166-71.
  42. Livesey, G., et al., Dietary Glycemic Index and Load and the Risk of Type 2 Diabetes: A Systematic Review and Updated Meta-Analyses of Prospective Cohort Studies. Nutrients, 2019. 11(6).
  43. Bhupathiraju, S.N., et al., Glycemic index, glycemic load, and risk of type 2 diabetes: results from 3 large US cohorts and an updated meta-analysis. The American journal of clinical nutrition, 2014. 100(1): p. 218-32.
  44. Micha, R., et al., Etiologic effects and optimal intakes of foods and nutrients for risk of cardiovascular diseases and diabetes: Systematic reviews and meta-analyses from the Nutrition and Chronic Diseases Expert Group (NutriCoDE). PLoS One, 2017. 12(4): p. e0175149.
  45. Tsilas, C.S., et al., Relation of total sugars, fructose and sucrose with incident type 2 diabetes: a systematic review and meta-analysis of prospective cohort studies. Cmaj, 2017. 189(20): p. E711-e720.
  46. Malik, V.S., et al., Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care, 2010. 33(11): p. 2477-83.
  47. Greenwood, D.C., et al., Association between sugar-sweetened and artificially sweetened soft drinks and type 2 diabetes: systematic review and dose-response meta-analysis of prospective studies. The British journal of nutrition, 2014. 112(5): p. 725-34.
  48. de Graaf, C., Texture and satiation: the role of oro-sensory exposure time. Physiology & behavior, 2012. 107(4): p. 496-501.
  49. Korsmo-Haugen, H.K., et al., Carbohydrate quantity in the dietary management of type 2 diabetes: A systematic review and meta-analysis. Diabetes Obes Metab, 2019. 21(1): p. 15-27.
  50. van Zuuren, E.J., et al., Effects of low-carbohydrate- compared with low-fat-diet interventions on metabolic control in people with type 2 diabetes: a systematic review including GRADE assessments. The American journal of clinical nutrition, 2018. 108(2): p. 300-331.
  51. Pan, B., et al., The impact of major dietary patterns on glycemic control, cardiovascular risk factors, and weight loss in patients with type 2 diabetes: A network meta-analysis. J Evid Based Med, 2019. 12(1): p. 29-39.
  52. Sainsbury, E., et al., Effect of dietary carbohydrate restriction on glycemic control in adults with diabetes: A systematic review and meta-analysis. Diabetes Research and Clinical Practice, 2018. 139: p. 239-252.
  53. Schwingshackl, L., et al., A network meta-analysis on the comparative efficacy of different dietary approaches on glycaemic control in patients with type 2 diabetes mellitus. Eur J Epidemiol, 2018. 33(2): p. 157-170.
  54. Huntriss, R., M. Campbell, and C. Bedwell, The interpretation and effect of a low-carbohydrate diet in the management of type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Eur J Clin Nutr, 2018. 72(3): p. 311-325.
  55. Meng, Y., et al., Efficacy of low carbohydrate diet for type 2 diabetes mellitus management: A systematic review and meta-analysis of randomized controlled trials. Diabetes Res Clin Pract, 2017. 131: p. 124-131.
  56. van Wyk, H.J., R.E. Davis, and J.S. Davies, A critical review of low-carbohydrate diets in people with Type 2 diabetes. Diabet Med, 2016. 33(2): p. 148-57.
  57. Ojo, O., et al., The Effect of Dietary Glycaemic Index on Glycaemia in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients, 2018. 10(3): p. 373.
  58. Wang, Q., et al., Effects comparison between low glycemic index diets and high glycemic index diets on HbA1c and fructosamine for patients with diabetes: A systematic review and meta-analysis. Prim Care Diabetes, 2015. 9(5): p. 362-9.
  59. Vaz, E.C., et al., Effectiveness and safety of carbohydrate counting in the management of adult patients with type 1 diabetes mellitus: a systematic review and meta-analysis. Archives of endocrinology and metabolism, 2018. 62(3): p. 337-345.
  60. American Diabetes Association, 5. Lifestyle management: standards of medical care in diabetes—2019. Diabetes Care, 2019. 42(Supplement 1): p. S46-S60.
  61. Voedingscentrum. Suiker. 2018; Available from: https://www.voedingscentrum.nl/encyclopedie/suiker.aspx.
  62. Franz, M.J., et al., Academy of Nutrition and Dietetics nutrition practice guideline for type 1 and type 2 diabetes in adults: systematic review of evidence for medical nutrition therapy effectiveness and recommendations for integration into the nutrition care process. Journal of the Academy of Nutrition and Dietetics, 2017. 117(10): p. 1659-1679.
  63. Bechthold, A., et al., Food groups and risk of coronary heart disease, stroke and heart failure: A systematic review and dose-response meta-analysis of prospective studies. Crit Rev Food Sci Nutr, 2019. 59(7): p. 1071-1090.
  64. Evans, R.A., et al., Fructose replacement of glucose or sucrose in food or beverages lowers postprandial glucose and insulin without raising triglycerides: a systematic review and meta-analysis. The American journal of clinical nutrition, 2017. 106(2): p. 506-518.
  65. Evans, R.A., et al., Chronic fructose substitution for glucose or sucrose in food or beverages has little effect on fasting blood glucose, insulin, or triglycerides: a systematic review and meta-analysis. The American journal of clinical nutrition, 2017. 106(2): p. 519-529.
  66. Lustig, R.H., Fructose: metabolic, hedonic, and societal parallels with ethanol. Journal of the American Dietetic Association, 2010. 110(9): p. 1307-1321.
  67. Zhang, Y.H., et al., Very high fructose intake increases serum LDL-cholesterol and total cholesterol: a meta-analysis of controlled feeding trials. The Journal of nutrition, 2013. 143(9): p. 1391-1398.
  68. Chiavaroli, L., et al., Effect of fructose on established lipid targets: a systematic review and meta‐analysis of controlled feeding trials. Journal of the American Heart Association, 2015. 4(9): p. e001700.
  69. Jensen, T., et al., Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. J Hepatol, 2018. 68(5): p. 1063-1075.
  70. Wang, D.D., et al., Effect of fructose on postprandial triglycerides: a systematic review and meta-analysis of controlled feeding trials. Atherosclerosis, 2014. 232(1): p. 125-133.
  71. Chiu, S., et al., Effect of fructose on markers of non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of controlled feeding trials. European journal of clinical nutrition, 2014. 68(4): p. 416-423.
  72. Choo, V.L., et al., Food sources of fructose-containing sugars and glycaemic control: systematic review and meta-analysis of controlled intervention studies. Bmj, 2018. 363: p. k4644.
  73. Noronha, J.C., et al., The effect of small doses of fructose and its epimers on glycemic control: a systematic review and meta-analysis of controlled feeding trials. Nutrients, 2018. 10(11): p. 1805.
  74. Kodama, S., et al., Relationship between intake of fruit separately from vegetables and triglycerides - A meta-analysis. Clin Nutr ESPEN, 2018. 27: p. 53-58.
  75. Tucker, R.M. and S.-Y. Tan, Do non-nutritive sweeteners influence acute glucose homeostasis in humans? A systematic review. Physiology & behavior, 2017. 182: p. 17-26.
  76. Livesey, G., Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutrition Research Reviews, 2003. 16(2): p. 163-191.
  77. EU Science Hub. Sugars and Sweeteners.  [cited 2020; Available from: https://ec.europa.eu/jrc/en/health-knowledge-gateway/promotion-prevention/nutrition/sugars-sweeteners.
  78. Azad, M.B., et al., Nonnutritive sweeteners and cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials and prospective cohort studies. Cmaj, 2017. 189(28): p. E929-E939.
  79. Imamura, F., et al., Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. Bmj, 2015. 351: p. h3576.
  80. Romo-Romo, A., et al., Effects of the non-nutritive sweeteners on glucose metabolism and appetite regulating hormones: systematic review of observational prospective studies and clinical trials. PloS one, 2016. 11(8): p. e0161264.
  81. Mosdøl, A., et al., Hypotheses and evidence related to intense sweeteners and effects on appetite and body weight changes: A scoping review of reviews. PloS one, 2018. 13(7): p. e0199558-e0199558.
  82. Liauchonak, I., et al., Non-Nutritive Sweeteners and Their Implications on the Development of Metabolic Syndrome. Nutrients, 2019. 11(3): p. 644.
  83. Toews, I., et al., Association between intake of non-sugar sweeteners and health outcomes: systematic review and meta-analyses of randomised and non-randomised controlled trials and observational studies. BMJ (Clinical research ed.), 2019. 364: p. k4718-k4718.
  84. Rogers, P.J., et al., Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies. Int J Obes (Lond), 2016. 40(3): p. 381-94.
  85. Santos, N.C., et al., Metabolic effects of aspartame in adulthood: A systematic review and meta-analysis of randomized clinical trials. Critical reviews in food science and nutrition, 2018. 58(12): p. 2068-2081.
  86. Nichol, A.D., M.J. Holle, and R. An, Glycemic impact of non-nutritive sweeteners: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr, 2018. 72(6): p. 796-804.
  87. Singh, R.K., et al., Influence of diet on the gut microbiome and implications for human health. Journal of translational medicine, 2017. 15(1): p. 73-73.
  88. Rijksinstituut voor Volksgezondheid en Milieu. Voedselconsumptiepeiling. 2018; Available from: https://wateetnederland.nl/.
  89. Russell, W.R., et al., Impact of Diet Composition on Blood Glucose Regulation. Crit Rev Food Sci Nutr, 2016. 56(4): p. 541-90.
  90. Veronese, N., et al., Dietary fiber and health outcomes: an umbrella review of systematic reviews and meta-analyses. The American journal of clinical nutrition, 2018. 107(3): p. 436-444.
  91. Wang, P.Y., et al., Higher intake of fruits, vegetables or their fiber reduces the risk of type 2 diabetes: A meta-analysis. J Diabetes Investig, 2016. 7(1): p. 56-69.
  92. InterAct Consortium, Dietary fibre and incidence of type 2 diabetes in eight European countries: the EPIC-InterAct Study and a meta-analysis of prospective studies. Diabetologia, 2015. 58(7): p. 1394-408.
  93. Aune, D., et al., Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. Bmj, 2016. 353: p. i2716.
  94. Della Pepa, G., et al., Wholegrain Intake and Risk of Type 2 Diabetes: Evidence from Epidemiological and Intervention Studies. Nutrients, 2018. 10(9).
  95. Chanson-Rolle, A., et al., Systematic review and meta-analysis of human studies to support a quantitative recommendation for whole grain intake in relation to type 2 diabetes. PloS one, 2015. 10(6).
  96. Schwingshackl, L., et al., Food groups and risk of type 2 diabetes mellitus: a systematic review and meta-analysis of prospective studies. Eur J Epidemiol, 2017. 32(5): p. 363-375.
  97. Gibb, R.D., et al., Psyllium fiber improves glycemic control proportional to loss of glycemic control: a meta-analysis of data in euglycemic subjects, patients at risk of type 2 diabetes mellitus, and patients being treated for type 2 diabetes mellitus. The American journal of clinical nutrition, 2015. 102(6): p. 1604-14.
  98. Jovanovski, E., et al., Effect of psyllium (Plantago ovata) fiber on LDL cholesterol and alternative lipid targets, non-HDL cholesterol and apolipoprotein B: a systematic review and meta-analysis of randomized controlled trials. The American journal of clinical nutrition, 2018. 108(5): p. 922-932.
  99. Liu, F., et al., Effect of inulin-type fructans on blood lipid profile and glucose level: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr, 2017. 71(1): p. 9-20.
  100. Kim, E.K., et al., Improving Effect of the Acute Administration of Dietary Fiber-Enriched Cereals on Blood Glucose Levels and Gut Hormone Secretion. J Korean Med Sci, 2016. 31(2): p. 222-30.
  101. Li, X., et al., Short- and Long-Term Effects of Wholegrain Oat Intake on Weight Management and Glucolipid Metabolism in Overweight Type-2 Diabetics: A Randomized Control Trial. Nutrients, 2016. 8(9).
  102. Malin, S.K., et al., A whole-grain diet reduces peripheral insulin resistance and improves glucose kinetics in obese adults: A randomized-controlled trial. Metabolism, 2018. 82: p. 111-117.
  103. Silva, F.M., et al., Fiber intake and glycemic control in patients with type 2 diabetes mellitus: a systematic review with meta-analysis of randomized controlled trials. Nutr Rev, 2013. 71(12): p. 790-801.
  104. Li, B., et al., Consumption of whole grains in relation to mortality from all causes, cardiovascular disease, and diabetes: Dose-response meta-analysis of prospective cohort studies. Medicine (Baltimore), 2016. 95(33): p. e4229.
  105. Carvalho, C.M., et al., Dietary Fiber Intake (Supplemental or Dietary Pattern Rich in Fiber) and Diabetic Kidney Disease: A Systematic Review of Clinical Trials. Nutrients, 2019. 11(2).
  106. Wong, M.Y.Z., et al., Dietary intake and diabetic retinopathy: A systematic review. PLoS One, 2018. 13(1): p. e0186582.
  107. Gezondheidsraad, Richtlijn voor de vezelconsumptie. 2006, Gezondheidsraad: Den Haag.
  108. European Food Safety Authority, Dietary Reference Values for nutrients Summary report. EFSA Supporting Publications, 2017. 14(12): p. e15121E.
  109. Voedingscentrum. Vetten. 2018; Available from: https://www.voedingscentrum.nl/encyclopedie/vetten.aspx.
  110. Mensink, R.P., et al., Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. The American journal of clinical nutrition, 2003. 77(5): p. 1146-1155.
  111. World Health Organization, Healthy Diet, W.H. Organization, Editor. 2018.
  112. Astrup, A., et al., WHO draft guidelines on dietary saturated and trans fatty acids: time for a new approach? Bmj, 2019. 366: p. l4137.
  113. Hooper, L., et al., Reduction in saturated fat intake for cardiovascular disease. Cochrane Database of Systematic Reviews, 2020(5).
  114. Chen, M., et al., Dairy fat and risk of cardiovascular disease in 3 cohorts of US adults. The American journal of clinical nutrition, 2016. 104(5): p. 1209-1217.
  115. Oomen, C.M., et al., Association between trans fatty acid intake and 10-year risk of coronary heart disease in the Zutphen Elderly Study: a prospective population-based study. Lancet, 2001. 357(9258): p. 746-51.
  116. Gezondheidsraad, Transvetzuren - Achtergronddocument bij Richtlijnen goede voeding 2015. 2015, Gezondheidsraad: Den Haag.
  117. Bresson, J.-L., et al., Plant stanol esters and blood cholesterol-Scientific substantiation of a health claim related to plant stanol esters and lower/reduced blood cholesterol and reduced risk of (coronary) heart disease pursuant to Article 14 of Regulation (EC) No 1924/2006 [1]: Scientific Opinion of the Panel on Dietetic Products, Nutrition and Allergies. EFSA Journal, 2008. 6(10 (825)).
  118. Scientific Committee on Food, General View of the Scientific Committee on Food on the long‐term effects of the intake of elevated levels of phytosterols from multiple dietary sources, with particular attention to the effects on β‐carotene (expressed on 26 September 2002). 2002.
  119. Alhazmi, A., et al., Macronutrient intakes and development of type 2 diabetes: a systematic review and meta-analysis of cohort studies. J Am Coll Nutr, 2012. 31(4): p. 243-58.
  120. de Souza, R.J., et al., Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. Bmj, 2015. 351: p. h3978.
  121. Schwingshackl, L., et al., Olive oil in the prevention and management of type 2 diabetes mellitus: a systematic review and meta-analysis of cohort studies and intervention trials. Nutr Diabetes, 2017. 7(4): p. e262.
  122. Pimpin, L., et al., Is Butter Back? A Systematic Review and Meta-Analysis of Butter Consumption and Risk of Cardiovascular Disease, Diabetes, and Total Mortality. PLoS One, 2016. 11(6): p. e0158118.
  123. Ericson, U., et al., Food sources of fat may clarify the inconsistent role of dietary fat intake for incidence of type 2 diabetes. The American journal of clinical nutrition, 2015. 101(5): p. 1065-80.
  124. Merino, J., et al., Quality of dietary fat and genetic risk of type 2 diabetes: individual participant data meta-analysis. BMJ, 2019. 366: p. l4292.
  125. Imamura, F., et al., Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes: A pooled analysis of prospective cohort studies. PLoS Med, 2018. 15(10): p. e1002670.
  126. Brown, T.J., et al., Omega-3, omega-6, and total dietary polyunsaturated fat for prevention and treatment of type 2 diabetes mellitus: systematic review and meta-analysis of randomised controlled trials. bmj, 2019. 366: p. l4697.
  127. Mitri, J., et al., Effect of dairy consumption and its fat content on glycemic control and cardiovascular disease risk factors in patients with type 2 diabetes: a randomized controlled study. The American Journal of Clinical Nutrition, 2020.
  128. Chen, C., X. Yu, and S. Shao, Effects of Omega-3 Fatty Acid Supplementation on Glucose Control and Lipid Levels in Type 2 Diabetes: A Meta-Analysis. PLoS One, 2015. 10(10): p. e0139565.
  129. Jovanovski, E., et al., The effect of alpha-linolenic acid on glycemic control in individuals with type 2 diabetes: A systematic review and meta-analysis of randomized controlled clinical trials. Medicine (Baltimore), 2017. 96(21): p. e6531.
  130. O'Mahoney, L.L., et al., Omega-3 polyunsaturated fatty acids favourably modulate cardiometabolic biomarkers in type 2 diabetes: a meta-analysis and meta-regression of randomized controlled trials. Cardiovasc Diabetol, 2018. 17(1): p. 98.
  131. Bahreini, M., et al., The Effect of Omega-3 on Circulating Adiponectin in Adults With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Can J Diabetes, 2018. 42(5): p. 553-559.
  132. Lin, N., et al., What is the impact of n-3 PUFAs on inflammation markers in Type 2 diabetic mellitus populations?: a systematic review and meta-analysis of randomized controlled trials. Lipids Health Dis, 2016. 15: p. 133.
  133. Hu, Y., F.B. Hu, and J.E. Manson, Marine Omega-3 Supplementation and Cardiovascular Disease: An Updated Meta-Analysis of 13 Randomized Controlled Trials Involving 127 477 Participants. Journal of the American Heart Association, 2019. 8(19): p. e013543-e013543.
  134. Abdelhamid, A.S., et al., Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev, 2018. 7: p. Cd003177.
  135. Abdelhamid, A.S., et al., Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev, 2020. 3: p. Cd003177.
  136. Abbott, K.A., et al., Do omega-3 PUFAs affect insulin resistance in a sex-specific manner? A systematic review and meta-analysis of randomized controlled trials. The American journal of clinical nutrition, 2016. 104(5): p. 1470-1484.
  137. Baker, W.L., E.L. Baker, and C.I. Coleman, The effect of plant sterols or stanols on lipid parameters in patients with type 2 diabetes: a meta-analysis. Diabetes research and clinical practice, 2009. 84(2): p. e33-e37.
  138. Wang, J.F., et al., A combination of omega-3 and plant sterols regulate glucose and lipid metabolism in individuals with impaired glucose regulation: a randomized and controlled clinical trial. Lipids Health Dis, 2019. 18(1): p. 106.
  139. Trautwein, E.A., et al., Plant sterols lower LDL-cholesterol and triglycerides in dyslipidemic individuals with or at risk of developing type 2 diabetes; a randomized, double-blind, placebo-controlled study. Nutr Diabetes, 2018. 8(1): p. 30.
  140. EFSA Panel on Dietetic Products, Scientific opinion on the substantiation of a health claim related to 3 g/day plant sterols/stanols and lowering blood LDL‐cholesterol and reduced risk of (coronary) heart disease pursuant to Article 19 of Regulation (EC) No 1924/2006. EFSA Journal, 2012. 10(5): p. 2693.
  141. Nutrition, S.A.C.o., Saturated fats and health: SACN report, P.H. England, Editor. 2019.
  142. Voedingscentrum. Onverzadigd vet. 2018; Available from: https://www.voedingscentrum.nl/encyclopedie/onverzadigd-vet.aspx.
  143. Hogewerf, J.B., Richtlijn GLP1-RA in de eerste lijn. 2020.
  144. Gannon, M.C., et al., Effect of protein ingestion on the glucose appearance rate in people with type 2 diabetes. The Journal of Clinical Endocrinology & Metabolism, 2001. 86(3): p. 1040-1047.
  145. Beelen, J., N.M. de Roos, and L. De Groot, Protein enrichment of familiar foods as an innovative strategy to increase protein intake in institutionalized elderly. The journal of nutrition, health & aging, 2017. 21(2): p. 173-179.
  146. Shang, X., et al., Dietary protein intake and risk of type 2 diabetes: results from the Melbourne Collaborative Cohort Study and a meta-analysis of prospective studies. The American journal of clinical nutrition, 2016. 104(5): p. 1352-1365.
  147. Tian, S., et al., Dietary Protein Consumption and the Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis of Cohort Studies. Nutrients, 2017. 9(9): p. 982.
  148. Ye, J., et al., Dietary protein intake and subsequent risk of type 2 diabetes: a dose–response meta-analysis of prospective cohort studies. Acta diabetologica, 2019. 56(8): p. 851-870.
  149. Dong, J.Y., et al., Effects of high-protein diets on body weight, glycaemic control, blood lipids and blood pressure in type 2 diabetes: meta-analysis of randomised controlled trials. The British journal of nutrition, 2013. 110(5): p. 781-9.
  150. Zhao, W.-T., et al., High protein diet is of benefit for patients with type 2 diabetes: An updated meta-analysis. Medicine, 2018. 97(46): p. e13149-e13149.
  151. Nederlands Huisartsen Genootschap, NHG-Standaard Chronische nierschade, in Utrecht: NHG. 2018.
  152. Nederlandse Internisten Vereniging, Diabetische nefropathie Monitoring, diagnostiek en behandeling. 2006: Utrecht.
  153. Li, X.-F., et al., Efficacy of low-protein diet in diabetic nephropathy: a meta-analysis of randomized controlled trials. Lipids in health and disease, 2019. 18(1): p. 82-82.
  154. Rughooputh, M.S., R. Zeng, and Y. Yao, Protein Diet Restriction Slows Chronic Kidney Disease Progression in Non-Diabetic and in Type 1 Diabetic Patients, but Not in Type 2 Diabetic Patients: A Meta-Analysis of Randomized Controlled Trials Using Glomerular Filtration Rate as a Surrogate. PloS one, 2015. 10(12): p. e0145505-e0145505.
  155. Zhu, H.G., et al., Efficacy of low-protein diet for diabetic nephropathy: a systematic review of randomized controlled trials. Lipids Health Dis, 2018. 17(1): p. 141.
  156. Federatie Medisch Specialisten, Chronische nierschade (CNS) 2018.
  157. Yan, B., et al., Effect of diet protein restriction on progression of chronic kidney disease: A systematic review and meta-analysis. PloS one, 2018. 13(11).
  158. Rhee, C.M., et al., Low-protein diet for conservative management of chronic kidney disease: a systematic review and meta-analysis of controlled trials. Journal of cachexia, sarcopenia and muscle, 2018. 9(2): p. 235-245.
  159. National Collaborating Centre for Chronic Conditions, Chronic Kidney Disease (Partial Update). Early identification and management of chronic kidney diseae in adults in primary and secondary care. London: Royal College of Physicians, 2014: p. 1-447.
  160. Knott, C., S. Bell, and A. Britton, Alcohol Consumption and the Risk of Type 2 Diabetes: A Systematic Review and Dose-Response Meta-analysis of More Than 1.9 Million Individuals From 38 Observational Studies. Diabetes Care, 2015. 38(9): p. 1804-12.
  161. Li, X.H., et al., Association between alcohol consumption and the risk of incident type 2 diabetes: a systematic review and dose-response meta-analysis. The American journal of clinical nutrition, 2016. 103(3): p. 818-29.
  162. Huang, J., X. Wang, and Y. Zhang, Specific types of alcoholic beverage consumption and risk of type 2 diabetes: A systematic review and meta-analysis. J Diabetes Investig, 2017. 8(1): p. 56-68.
  163. Sluik, D., et al., Alcoholic beverage preference and diabetes incidence across Europe: the Consortium on Health and Ageing Network of Cohorts in Europe and the United States (CHANCES) project. Eur J Clin Nutr, 2017. 71(5): p. 659-668.
  164. Holmes, M.V., et al., Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data. Bmj, 2014. 349: p. g4164.
  165. Hirst, J.A., et al., Short- and medium-term effects of light to moderate alcohol intake on glycaemic control in diabetes mellitus: a systematic review and meta-analysis of randomized trials. Diabet Med, 2017. 34(5): p. 604-611.
  166. Tetzschner, R., K. Norgaard, and A. Ranjan, Effects of alcohol on plasma glucose and prevention of alcohol-induced hypoglycemia in type 1 diabetes-A systematic review with GRADE. Diabetes Metab Res Rev, 2018. 34(3).
  167. Tourkmani, A.M., et al., Hypoglycemia in Type 2 Diabetes Mellitus patients: A review article. Diabetes Metab Syndr, 2018. 12(5): p. 791-794.
  168. O'Keefe, E.L., et al., Alcohol and CV Health: Jekyll and Hyde J-Curves. Prog Cardiovasc Dis, 2018. 61(1): p. 68-75.
  169. Polsky, S. and H.K. Akturk, Alcohol Consumption, Diabetes Risk, and Cardiovascular Disease Within Diabetes. Curr Diab Rep, 2017. 17(12): p. 136.
  170. Gezondheidsraad, Alcohol - Achtergronddocument bij Richtlijnen goede voeding 2015. 2015, Gezondheidsraad: Den Haag.
  171. Zhu, W., et al., Association of alcohol intake with risk of diabetic retinopathy: a meta-analysis of observational studies. Sci Rep, 2017. 7(1): p. 4.
  172. Dow, C., et al., Diet and risk of diabetic retinopathy: a systematic review. Eur J Epidemiol, 2018. 33(2): p. 141-156.
  173. Pastor, A., et al., Alcohol and recreational drug use in young adults with type 1 diabetes. Diabetes Res Clin Pract, 2017. 130: p. 186-195.
  174. Farmacotherapeutisch kompas. Glucagon. Available from: https://www.farmacotherapeutischkompas.nl/bladeren/preparaatteksten/g/glucagon.
  175. Dietary Guidelines Advisory Committee, Scientific report of the 2015 Dietary Guidelines Advisory Committee: advisory report to the Secretary of Health and Human Services and the Secretary of Agriculture. Agricultural Research Service, 2015.
  176. Hamer, M. and Y. Chida, Intake of fruit, vegetables, and antioxidants and risk of type 2 diabetes: systematic review and meta-analysis. Journal of hypertension, 2007. 25(12): p. 2361-2369.
  177. Eshak, E.S., et al., Fat-soluble vitamins from diet in relation to risk of type 2 diabetes mellitus in Japanese population. British Journal of Nutrition, 2019. 121(6): p. 647-653.
  178. Yan, M.K.-W. and H. Khalil, Vitamin supplements in type 2 diabetes mellitus management: a review. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2017. 11: p. S589-S595.
  179. Bolignano, D., et al., Antioxidant agents for delaying diabetic kidney disease progression: a systematic review and meta-analysis. PLoS One, 2017. 12(6): p. e0178699.
  180. Valdes-Ramos, R., et al., Vitamins and type 2 diabetes mellitus. Endocr Metab Immune Disord Drug Targets, 2015. 15(1): p. 54-63.
  181. Al-Attas, O.S., et al., Blood thiamine and its phosphate esters as measured by high-performance liquid chromatography: levels and associations in diabetes mellitus patients with varying degrees of microalbuminuria. J Endocrinol Invest, 2012. 35(11): p. 951-6.
  182. Thornalley, P.J., et al., High prevalence of low plasma thiamine concentration in diabetes linked to a marker of vascular disease. Diabetologia, 2007. 50(10): p. 2164-2170.
  183. Karkabounas, S., et al., Effects of α-lipoic acid, carnosine, and thiamine supplementation in obese patients with type 2 diabetes mellitus: a randomized, double-blind study. Journal of medicinal food, 2018. 21(12): p. 1197-1203.
  184. Alaei-Shahmiri, F., et al., The impact of thiamine supplementation on blood pressure, serum lipids and C-reactive protein in individuals with hyperglycemia: a randomised, double-blind cross-over trial. Diabetes Metab Syndr, 2015. 9(4): p. 213-7.
  185. Alaei Shahmiri, F., et al., High-dose thiamine supplementation improves glucose tolerance in hyperglycemic individuals: a randomized, double-blind cross-over trial. Eur J Nutr, 2013. 52(7): p. 1821-4.
  186. Ding, Y., Y. Li, and A. Wen, Effect of niacin on lipids and glucose in patients with type 2 diabetes: A meta-analysis of randomized, controlled clinical trials. Clin Nutr, 2015. 34(5): p. 838-44.
  187. Goldie, C., et al., Niacin therapy and the risk of new-onset diabetes: a meta-analysis of randomised controlled trials. Heart, 2016. 102(3): p. 198-203.
  188. Dwyer, J.P., et al., Pyridoxamine dihydrochloride in diabetic nephropathy (PIONEER-CSG-17): lessons learned from a pilot study. Nephron, 2015. 129(1): p. 22-28.
  189. Dakshinamurti, K., Vitamins and their derivatives in the prevention and treatment of metabolic syndrome diseases (diabetes). Can J Physiol Pharmacol, 2015. 93(5): p. 355-62.
  190. Lind, M.V., et al., Effect of folate supplementation on insulin sensitivity and type 2 diabetes: a meta-analysis of randomized controlled trials. The American journal of clinical nutrition, 2019. 109(1): p. 29-42.
  191. Akbari, M., et al., The Effects of Folate Supplementation on Diabetes Biomarkers Among Patients with Metabolic Diseases: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Horm Metab Res, 2018. 50(2): p. 93-105.
  192. Zhao, J.V., C.M. Schooling, and J.X. Zhao, The effects of folate supplementation on glucose metabolism and risk of type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Annals of epidemiology, 2018. 28(4): p. 249-257.e1.
  193. Tabrizi, R., et al., The effects of folate supplementation on lipid profiles among patients with metabolic diseases: A systematic review and meta-analysis of randomized controlled trials. Diabetes Metab Syndr, 2018. 12(3): p. 423-430.
  194. Raval, A.D., et al., Vitamin B and its derivatives for diabetic kidney disease. Cochrane Database of Systematic Reviews, 2015(1).
  195. Wang, D., J.X. Zhai, and D.W. Liu, Serum folate, vitamin B12 levels and diabetic peripheral neuropathy in type 2 diabetes: A meta-analysis. Mol Cell Endocrinol, 2017. 443: p. 72-79.
  196. Chapman, L.E., A.L. Darling, and J.E. Brown, Association between metformin and vitamin B12 deficiency in patients with type 2 diabetes: A systematic review and meta-analysis. Diabetes Metab, 2016. 42(5): p. 316-327.
  197. Niafar, M., et al., The role of metformin on vitamin B12 deficiency: a meta-analysis review. Internal and emergency medicine, 2015. 10(1): p. 93-102.
  198. Nederlands Huisartsen Genootschap, Laboratoriumdiagnostiek Vitamine B12-deficiëntie (LESA). 2018.
  199. 1Parry-Strong, A., et al., Sublingual vitamin B12 compared to intramuscular injection in patients with type 2 diabetes treated with metformin: a randomised trial. N Z Med J, 2016. 129(1436): p. 67-75.
  200. Jiang, D.Q., et al., Prostaglandin E1 plus methylcobalamin combination therapy versus prostaglandin E1 monotherapy for patients with diabetic peripheral neuropathy: A meta-analysis of randomized controlled trials. Medicine (Baltimore), 2018. 97(44): p. e13020.
  201. Khodaeian, M., et al., Effect of vitamins C and E on insulin resistance in diabetes: a meta‐analysis study. European journal of clinical investigation, 2015. 45(11): p. 1161-1174.
  202. Ashor, A.W., et al., Effects of vitamin C supplementation on glycaemic control: a systematic review and meta-analysis of randomised controlled trials. Eur J Clin Nutr, 2017. 71(12): p. 1371-1380.
  203. de Paula, T.P., et al., Effects of individual micronutrients on blood pressure in patients with type 2 diabetes: a systematic review and meta-analysis of randomized clinical trials. Sci Rep, 2017. 7: p. 40751.
  204. Bellou, V., et al., Risk factors for type 2 diabetes mellitus: An exposure-wide umbrella review of meta-analyses. PLoS One, 2018. 13(3): p. e0194127.
  205. Lucato, P., et al., Low vitamin D levels increase the risk of type 2 diabetes in older adults: A systematic review and meta-analysis. Maturitas, 2017. 100: p. 8-15.
  206. Rafiq, S. and P.B. Jeppesen, Is Hypovitaminosis D Related to Incidence of Type 2 Diabetes and High Fasting Glucose Level in Healthy Subjects: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients, 2018. 10(1).
  207. Lu, L., et al., Association of vitamin D with risk of type 2 diabetes: a Mendelian randomisation study in European and Chinese adults. PLoS medicine, 2018. 15(5).
  208. Ekmekcioglu, C., D. Haluza, and M. Kundi, 25-Hydroxyvitamin D Status and Risk for Colorectal Cancer and Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Epidemiological Studies. International journal of environmental research and public health, 2017. 14(2): p. 127.
  209. Seida, J.C., et al., Clinical review: Effect of vitamin D3 supplementation on improving glucose homeostasis and preventing diabetes: a systematic review and meta-analysis. J Clin Endocrinol Metab, 2014. 99(10): p. 3551-60.
  210. Swart, K.M., et al., Effects of vitamin D supplementation on markers for cardiovascular disease and type 2 diabetes: an individual participant data meta-analysis of randomized controlled trials. The American journal of clinical nutrition, 2018. 107(6): p. 1043-1053.
  211. Krul-Poel, Y.H., et al., Management of endocrine disease: the effect of vitamin D supplementation on glycaemic control in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. European journal of endocrinology, 2017. 176(1): p. R1-R14.
  212. Li, X., et al., The Effect of Vitamin D Supplementation on Glycemic Control in Type 2 Diabetes Patients: A Systematic Review and Meta-Analysis. Nutrients, 2018. 10(3): p. 375.
  213. Wang, Y., et al., Effects of Vitamin D Supplementation on Renal Function, Inflammation and Glycemic Control in Patients with Diabetic Nephropathy: a Systematic Review and Meta-Analysis. Kidney Blood Press Res, 2019. 44(1): p. 72-87.
  214. Hu, Z., et al., Efficacy of vitamin D supplementation on glycemic control in type 2 diabetes patients: a meta-analysis of interventional studies. Medicine, 2019. 98(14).
  215. Lee, C.J., et al., The effect of vitamin D supplementation on glucose metabolism in type 2 diabetes mellitus: A systematic review and meta-analysis of intervention studies. J Diabetes Complications, 2017. 31(7): p. 1115-1126.
  216. Mirhosseini, N., et al., The effect of improved serum 25-hydroxyvitamin D status on glycemic control in diabetic patients: a meta-analysis. The Journal of Clinical Endocrinology & Metabolism, 2017. 102(9): p. 3097-3110.
  217. Poolsup, N., N. Suksomboon, and N. Plordplong, Effect of vitamin D supplementation on insulin resistance and glycaemic control in prediabetes: a systematic review and meta-analysis. Diabet Med, 2016. 33(3): p. 290-9.
  218. Wu, C., et al., Vitamin D supplementation and glycemic control in type 2 diabetes patients: A systematic review and meta-analysis. Metabolism, 2017. 73: p. 67-76.
  219. Sahebi, R., et al., The effects of vitamin D supplementation on indices of glycemic control in Iranian diabetics: A systematic review and meta-analysis. Complement Ther Clin Pract, 2019. 34: p. 294-304.
  220. Beveridge, L.A., et al., Effect of Vitamin D Supplementation on Blood Pressure: A Systematic Review and Meta-analysis Incorporating Individual Patient Data. JAMA Intern Med, 2015. 175(5): p. 745-54.
  221. Lee, K.J. and Y.J. Lee, Effects of vitamin D on blood pressure in patients with type 2 diabetes mellitus. Int J Clin Pharmacol Ther, 2016. 54(4): p. 233-42.
  222. Jafari, T., A.A. Fallah, and A. Barani, Effects of vitamin D on serum lipid profile in patients with type 2 diabetes: A meta-analysis of randomized controlled trials. Clin Nutr, 2016. 35(6): p. 1259-1268.
  223. Luo, B.A., F. Gao, and L.L. Qin, The Association between Vitamin D Deficiency and Diabetic Retinopathy in Type 2 Diabetes: A Meta-Analysis of Observational Studies. Nutrients, 2017. 9(3).
  224. Zhang, J., S. Upala, and A. Sanguankeo, Relationship between vitamin D deficiency and diabetic retinopathy: a meta-analysis. Can J Ophthalmol, 2017. 52 Suppl 1: p. S39-s44.
  225. Lv, W.S., et al., Serum 25-hydroxyvitamin D levels and peripheral neuropathy in patients with type 2 diabetes: a systematic review and meta-analysis. J Endocrinol Invest, 2015. 38(5): p. 513-8.
  226. Feng, R., et al., Lower serum 25 (OH) D concentrations in type 1 diabetes: A meta-analysis. Diabetes Res Clin Pract, 2015. 108(3): p. e71-5.
  227. Shen, L., Q.S. Zhuang, and H.F. Ji, Assessment of vitamin D levels in type 1 and type 2 diabetes patients: Results from metaanalysis. Mol Nutr Food Res, 2016. 60(5): p. 1059-67.
  228. Liu, C., et al., Correlation of serum vitamin D level with type 1 diabetes mellitus in children: a meta-analysis. Nutricion hospitalaria, 2015. 32(4): p. 1591-1594.
  229. Zwakenberg, S.R., et al., Circulating Phylloquinone Concentrations and Risk of Type 2 Diabetes: A Mendelian Randomization Study. Diabetes, 2019. 68(1): p. 220-225.
  230. Shahdadian, F., H. Mohammadi, and M.H. Rouhani, Effect of Vitamin K Supplementation on Glycemic Control: A Systematic Review and Meta-Analysis of Clinical Trials. Horm Metab Res, 2018. 50(3): p. 227-235.
  231. Hannon, B.A., et al., Use and abuse of dietary supplements in persons with diabetes. Nutrition & Diabetes, 2020. 10(1): p. 1-12.
  232.  Gezondheidsraad, An evaluation of the EFSA’s dietary reference values (DRVs), Part 1 Dietary reference values for vitamins and minerals for adults. 2018.
  233. Pannu, P.K., E.K. Calton, and M.J. Soares, Calcium and vitamin D in obesity and related chronic disease, in Advances in food and nutrition research. 2016, Elsevier. p. 57-100.
  234. Pittas, A.G., et al., The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. The Journal of Clinical Endocrinology & Metabolism, 2007. 92(6): p. 2017-2029.
  235. Dong, J. and L. Qin, Dietary calcium intake and risk of type 2 diabetes: possible confounding by magnesium. European journal of clinical nutrition, 2012. 66(3): p. 408-410.
  236. Muñoz-Garach, A., B. García-Fontana, and M. Muñoz-Torres, Vitamin D Status, Calcium Intake and Risk of Developing Type 2 Diabetes: An Unresolved Issue. Nutrients, 2019. 11(3): p. 642.
  237. Tabesh, M., et al., Effects of calcium–vitamin D co-supplementation on metabolic profiles in vitamin D insufficient people with type 2 diabetes: a randomised controlled clinical trial. Diabetologia, 2014. 57(10): p. 2038-2047.
  238. Gagnon, C., et al., Effects of combined calcium and vitamin D supplementation on insulin secretion, insulin sensitivity and β-cell function in multi-ethnic vitamin D-deficient adults at risk for type 2 diabetes: a pilot randomized, placebo-controlled trial. PloS one, 2014. 9(10).
  239. Gomes, J.M.G., J.D.A. Costa, and R.C.G. Alfenas, Effect of increased calcium consumption from fat-free milk in an energy-restricted diet on the metabolic syndrome and cardiometabolic outcomes in adults with type 2 diabetes mellitus: a randomised cross-over clinical trial. The British journal of nutrition, 2018. 119(4): p. 422-430.
  240. Tabesh, M., et al., Effects of calcium plus vitamin D supplementation on anthropometric measurements and blood pressure in vitamin D insufficient people with type 2 diabetes: a randomized controlled clinical trial. Journal of the American College of Nutrition, 2015. 34(4): p. 281-289.
  241. Chatterjee, R., et al., Potassium Measures and Their Associations with Glucose and Diabetes Risk: The Multi-Ethnic Study of Atherosclerosis (MESA). PloS one, 2016. 11(6): p. e0157252-e0157252.
  242. Chatterjee, R., et al., Effects of potassium supplements on glucose metabolism in African Americans with prediabetes: a pilot trial. The American journal of clinical nutrition, 2017. 106(6): p. 1431-1438.
  243. Wu, J., et al., Circulating magnesium levels and incidence of coronary heart diseases, hypertension, and type 2 diabetes mellitus: a meta-analysis of prospective cohort studies. Nutrition journal, 2017. 16(1): p. 60-60.
  244. Fang, X., et al., Dose-Response Relationship between Dietary Magnesium Intake and Risk of Type 2 Diabetes Mellitus: A Systematic Review and Meta-Regression Analysis of Prospective Cohort Studies. Nutrients, 2016. 8(11).
  245. Xu, T., et al., Nonlinear Reduction in Risk for Type 2 Diabetes by Magnesium Intake: An Updated Meta-Analysis of Prospective Cohort Studies. Biomedical and Environmental Sciences, 2015. 28(7): p. 527-34.
  246. Cheungpasitporn, W., et al., Hypomagnesemia linked to new-onset diabetes mellitus after kidney transplantation: a systematic review and meta-analysis. Endocrine research, 2016. 41(2): p. 142-147.
  247. Fang, X., et al., Dietary magnesium intake and the risk of cardiovascular disease, type 2 diabetes, and all-cause mortality: a dose-response meta-analysis of prospective cohort studies. BMC medicine, 2016. 14(1): p. 210-210.
  248. Veronese, N., et al., Effect of magnesium supplementation on glucose metabolism in people with or at risk of diabetes: a systematic review and meta-analysis of double-blind randomized controlled trials. Eur J Clin Nutr, 2016. 70(12): p. 1354-1359.
  249. Simental-Mendia, L.E., et al., A systematic review and meta-analysis of randomized controlled trials on the effects of magnesium supplementation on insulin sensitivity and glucose control. Pharmacol Res, 2016. 111: p. 272-282.
  250. Dibaba, D.T., et al., The effect of magnesium supplementation on blood pressure in individuals with insulin resistance, prediabetes, or noncommunicable chronic diseases: a meta-analysis of randomized controlled trials. The American journal of clinical nutrition, 2017. 106(3): p. 921-929.
  251. Tang, H., et al., Elevated serum magnesium associated with SGLT2 inhibitor use in type 2 diabetes patients: a meta-analysis of randomised controlled trials. Diabetologia, 2016. 59(12): p. 2546-2551.
  252. Gezondheidsraad, Natrium -Achtergronddocument bij Richtlijnen goede voeding 2015. 2015: Den Haag.
  253. Suckling, R.J., et al., Modest Salt Reduction Lowers Blood Pressure and Albumin Excretion in Impaired Glucose Tolerance and Type 2 Diabetes Mellitus: A Randomized Double-Blind Trial. Hypertension, 2016. 67(6): p. 1189-95.
  254. Luther, J.M., et al., Dietary sodium restriction decreases insulin secretion without affecting insulin sensitivity in humans. The Journal of Clinical Endocrinology & Metabolism, 2014. 99(10): p. E1895-E1902.
  255. Chen, A.X., et al., Short-term dietary salt supplementation blunts telmisartan induced increases in plasma renin activity in hypertensive patients with type 2 diabetes mellitus. Clin Sci (Lond), 2015. 129(5): p. 415-22.
  256. Thomas, M.C., et al., The association between dietary sodium intake, ESRD, and all-cause mortality in patients with type 1 diabetes. Diabetes Care, 2011. 34(4): p. 861-6.
  257. Ekinci, E.I., et al., Dietary salt intake and mortality in patients with type 2 diabetes. Diabetes Care, 2011. 34(3): p. 703-9.
  258. Whitham, D., Nutrition for the prevention and treatment of chronic kidney disease in diabetes. Canadian journal of diabetes, 2014. 38(5): p. 344-348.
  259. Paula, T.P., et al., Effects of the DASH Diet and Walking on Blood Pressure in Patients With Type 2 Diabetes and Uncontrolled Hypertension: A Randomized Controlled Trial. J Clin Hypertens (Greenwich), 2015. 17(11): p. 895-901.
  260. Kuwabara, M., et al., Increased Serum Sodium and Serum Osmolarity Are Independent Risk Factors for Developing Chronic Kidney Disease; 5 Year Cohort Study. PLoS One, 2017. 12(1): p. e0169137.
  261. Clegg, D.J., M. Cody, and B.F. Palmer. Challenges in Treating Cardiovascular Disease: Restricting Sodium and Managing Hyperkalemia. in Mayo Clinic Proceedings. 2017. Elsevier.
  262. Costello, R.B., J.T. Dwyer, and R.L. Bailey, Chromium supplements for glycemic control in type 2 diabetes: limited evidence of effectiveness. Nutr Rev, 2016. 74(7): p. 455-68.
  263. Yin, R.V. and O.J. Phung, Effect of chromium supplementation on glycated hemoglobin and fasting plasma glucose in patients with diabetes mellitus. Nutr J, 2015. 14: p. 14.
  264. Bao, W., et al., Dietary iron intake, body iron stores, and the risk of type 2 diabetes: a systematic review and meta-analysis. BMC medicine, 2012. 10(1): p. 119.
  265. Søgaard, K.L., et al., The role of iron in type 1 diabetes etiology: a systematic review of new evidence on a long-standing mystery. The review of diabetic studies: RDS, 2017. 14(2-3): p. 269.
  266. Kulprachakarn, K., et al., Micronutrients and natural compounds status and their effects on wound healing in the diabetic foot ulcer. The international journal of lower extremity wounds, 2017. 16(4): p. 244-250.
  267. Qiu, Q., et al., Copper in diabetes mellitus: a meta-analysis and systematic review of plasma and serum studies. Biological trace element research, 2017. 177(1): p. 53-63.
  268. Fernandez-Cao, J.C., et al., Dietary zinc intake and whole blood zinc concentration in subjects with type 2 diabetes versus healthy subjects: A systematic review, meta-analysis and meta-regression. J Trace Elem Med Biol, 2018. 49: p. 241-251.
  269. Ruz, M., et al., Does zinc really “metal” with diabetes? The epidemiologic evidence. Current diabetes reports, 2016. 16(11): p. 111.
  270. Chu, A., M. Foster, and S. Samman, Zinc Status and Risk of Cardiovascular Diseases and Type 2 Diabetes Mellitus-A Systematic Review of Prospective Cohort Studies. Nutrients, 2016. 8(11).
  271. Fernández-Cao, J.C., et al., Zinc intake and status and risk of type 2 diabetes mellitus: a systematic review and meta-analysis. Nutrients, 2019. 11(5): p. 1027.
  272. El Dib, R., et al., Zinc supplementation for the prevention of type 2 diabetes mellitus in adults with insulin resistance. Cochrane Database of Systematic Reviews, 2015(5).
  273. de Carvalho, G.B., et al., Zinc’s role in the glycemic control of patients with type 2 diabetes: a systematic review. Biometals, 2017. 30(2): p. 151-162.
  274. Smith, D.M., R.M. Pickering, and G.T. Lewith, A systematic review of vanadium oral supplements for glycaemic control in type 2 diabetes mellitus. Qjm, 2008. 101(5): p. 351-8.
  275. Voedingscentrum. Mineralen. 2018; Available from: https://www.voedingscentrum.nl/encyclopedie/mineralen.aspx.
  276. Rijksinstituut voor Volksgezondheid en Milieu, NEVO-online[Dataset].
  277. Robertson, T.M., et al., Starchy carbohydrates in a healthy diet: the role of the humble potato. Nutrients, 2018. 10(11): p. 1764.
  278. Al-Khudairy, L., et al., Dietary factors and type 2 diabetes in the Middle East: what is the evidence for an association?--a systematic review. Nutrients, 2013. 5(10): p. 3871-3897.
  279. Borch, D., et al., Potatoes and risk of obesity, type 2 diabetes, and cardiovascular disease in apparently healthy adults: a systematic review of clinical intervention and observational studies. The American journal of clinical nutrition, 2016. 104(2): p. 489-498.
  280. Schwingshackl, L., et al., Potatoes and risk of chronic disease: a systematic review and dose-response meta-analysis. European journal of nutrition, 2019. 58(6): p. 2243-2251.
  281. Voedingscentrum, Verhogen eieren het cholesterol? 2018.
  282. Tamez, M., J.K. Virtanen, and M. Lajous, Egg consumption and risk of incident type 2 diabetes: a dose-response meta-analysis of prospective cohort studies. The British journal of nutrition, 2016. 115(12): p. 2212-8.
  283. Djoussé, L., O.A. Khawaja, and J.M. Gaziano, Egg consumption and risk of type 2 diabetes: a meta-analysis of prospective studies. The American journal of clinical nutrition, 2016. 103(2): p. 474-80.
  284. Wallin, A., et al., Egg consumption and risk of type 2 diabetes: a prospective study and dose-response meta-analysis. Diabetologia, 2016. 59(6): p. 1204-13.
  285. Richard, C., et al., Impact of egg consumption on cardiovascular risk factors in individuals with type 2 diabetes and at risk for developing diabetes: a systematic review of randomized nutritional intervention studies. Canadian Journal of Diabetes, 2017. 41(4): p. 453-463.
  286. Weggemans, R.M., P.L. Zock, and M.B. Katan, Dietary cholesterol from eggs increases the ratio of total cholesterol to high-density lipoprotein cholesterol in humans: a meta-analysis. The American journal of clinical nutrition, 2001. 73(5): p. 885-891.
  287. Shin, J.Y., et al., Egg consumption in relation to risk of cardiovascular disease and diabetes: a systematic review and meta-analysis. The American journal of clinical nutrition, 2013. 98(1): p. 146-159.
  288. Jannasch, F., J. Kröger, and M.B. Schulze, Dietary patterns and type 2 diabetes: a systematic literature review and meta-analysis of prospective studies. The Journal of nutrition, 2017. 147(6): p. 1174-1182.
  289. Li, S., et al., Fruit intake decreases risk of incident type 2 diabetes: an updated meta-analysis. Endocrine, 2015. 48(2): p. 454-60.
  290. Wu, Y., et al., Fruit and vegetable consumption and risk of type 2 diabetes mellitus: a dose-response meta-analysis of prospective cohort studies. Nutr Metab Cardiovasc Dis, 2015. 25(2): p. 140-7.
  291. Guo, X., et al., Associations of dietary intakes of anthocyanins and berry fruits with risk of type 2 diabetes mellitus: a systematic review and meta-analysis of prospective cohort studies. Eur J Clin Nutr, 2016. 70(12): p. 1360-1367.
  292. Guo, X.-f., et al., Apple and pear consumption and type 2 diabetes mellitus risk: a meta-analysis of prospective cohort studies. Food & function, 2017. 8(3): p. 927-934.
  293. Jia, X., et al., Consumption of citrus and cruciferous vegetables with incident type 2 diabetes mellitus based on a meta-analysis of prospective study. Prim Care Diabetes, 2016. 10(4): p. 272-80.
  294. Fardet, A., C. Richonnet, and A. Mazur, Association between consumption of fruit or processed fruit and chronic diseases and their risk factors: a systematic review of meta-analyses. Nutrition reviews, 2019. 77(6): p. 376-387.
  295. Flood-Obbagy, J.E. and B.J. Rolls, The effect of fruit in different forms on energy intake and satiety at a meal. Appetite, 2009. 52(2): p. 416-422.
  296. Viguiliouk, E., et al., Effect of vegetarian dietary patterns on cardiometabolic risk factors in diabetes: A systematic review and meta-analysis of randomized controlled trials. Clinical Nutrition, 2019. 38(3): p. 1133-1145.
  297. Rocha, D.M.U.P., et al., Effects of blueberry and cranberry consumption on type 2 diabetes glycemic control: A systematic review. Critical reviews in food science and nutrition, 2019. 59(11): p. 1816-1828.
  298. Huang, H., et al., Lack of efficacy of pomegranate supplementation for glucose management, insulin levels and sensitivity: evidence from a systematic review and meta-analysis. Nutrition journal, 2017. 16(1): p. 67.
  299. Poolsup, N., N. Suksomboon, and N.J. Paw, Effect of dragon fruit on glycemic control in prediabetes and type 2 diabetes: A systematic review and meta-analysis. PLoS One, 2017. 12(9): p. e0184577.
  300. Murphy, M.M., et al., 100% Fruit juice and measures of glucose control and insulin sensitivity: a systematic review and meta-analysis of randomised controlled trials. Journal of nutritional science, 2017. 6.
  301. Qian, F., et al., Association between plant-based dietary patterns and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA internal medicine, 2019. 179(10): p. 1335-1344.
  302. Maghsoudi, Z., R. Ghiasvand, and A. Salehi-Abargouei, Empirically derived dietary patterns and incident type 2 diabetes mellitus: a systematic review and meta-analysis on prospective observational studies. Public Health Nutrition, 2016. 19(2): p. 230-241.
  303. Chen, G.-C., et al., Green leafy and cruciferous vegetable consumption and risk of type 2 diabetes: results from the Singapore Chinese Health Study and meta-analysis. British Journal of Nutrition, 2018. 119(9): p. 1057-1067.
  304. Guo, K., et al., Meta-analysis of prospective studies on the effects of nut consumption on hypertension and type 2 diabetes mellitus. J Diabetes, 2015. 7(2): p. 202-12.
  305. Wu, L., et al., Nut consumption and risk of cancer and type 2 diabetes: a systematic review and meta-analysis. Nutrition reviews, 2015. 73(7): p. 409-425.
  306. Del Gobbo, L.C., et al., Effects of tree nuts on blood lipids, apolipoproteins, and blood pressure: systematic review, meta-analysis, and dose-response of 61 controlled intervention trials. The American journal of clinical nutrition, 2015. 102(6): p. 1347-1356.
  307. Ntzouvani, A., S. Antonopoulou, and T. Nomikos, Effects of nut and seed consumption on markers of glucose metabolism in adults with prediabetes: a systematic review of randomised controlled trials. British Journal of Nutrition, 2019. 122(4): p. 361-375.
  308. Ribeiro, P.d.M., et al., Effect of chronic consumption of pistachios (Pistacia vera L.) on glucose metabolism in pre-diabetics and type 2 diabetics: A systematic review. Critical reviews in food science and nutrition, 2019. 59(7): p. 1115-1123.
  309. Neale, E.P., et al., Effect of walnut consumption on markers of blood glucose control: a systematic review and meta-analysis. British Journal of Nutrition, 2020: p. 1-33.
  310. Ferreira, H., et al., Benefits of pulse consumption on metabolism and health: A systematic review of randomized controlled trials. Critical Reviews in Food Science and Nutrition, 2020: p. 1-12.
  311. Viguiliouk, E., et al., Associations between Dietary Pulses Alone or with Other Legumes and Cardiometabolic Disease Outcomes: An Umbrella Review and Updated Systematic Review and Meta-analysis of Prospective Cohort Studies. Advances in Nutrition, 2019. 10(Supplement_4): p. S308-S319.
  312. Tang, J., et al., Legume and soy intake and risk of type 2 diabetes: a systematic review and meta-analysis of prospective cohort studies. The American Journal of Clinical Nutrition, 2020. 111(3): p. 677-688.
  313. Bielefeld, D., S. Grafenauer, and A. Rangan, The Effects of Legume Consumption on Markers of Glycaemic Control in Individuals with and without Diabetes Mellitus: A Systematic Literature Review of Randomised Controlled Trials. Nutrients, 2020. 12(7): p. 2123.
  314. Zhang, X.-M., Y.-B. Zhang, and M.-H. Chi, Soy protein supplementation reduces clinical indices in type 2 diabetes and metabolic syndrome. Yonsei medical journal, 2016. 57(3): p. 681-689.
  315. Händel, M.N., et al., Processed meat intake and chronic disease morbidity and mortality: An overview of systematic reviews and meta-analyses. PloS one, 2019. 14(10): p. e0223883-e0223883.
  316. Fan, M., et al., Dietary Protein Consumption and the Risk of Type 2 Diabetes: ADose-Response Meta-Analysis of Prospective Studies. Nutrients, 2019. 11(11).
  317. Zeraatkar, D., et al., Red and processed meat consumption and risk for all-cause mortality and cardiometabolic outcomes: a systematic review and meta-analysis of cohort studies. Annals of Internal Medicine, 2019. 171(10): p. 703-710.
  318. Vernooij, R.W., et al., Patterns of red and processed meat consumption and risk for cardiometabolic and cancer outcomes: a systematic review and meta-analysis of cohort studies. Annals of internal medicine, 2019. 171(10): p. 732-741.
  319. Fretts, A.M., et al., Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians. The American journal of clinical nutrition, 2015. 102(5): p. 1266-1278.
  320. Gijsbers, L., et al., Consumption of dairy foods and diabetes incidence: a dose-response meta-analysis of observational studies. The American journal of clinical nutrition, 2016. 103(4): p. 1111-1124.
  321. Soedamah-Muthu, S.S. and J. De Goede, Dairy consumption and cardiometabolic diseases: Systematic review and updated meta-analyses of prospective cohort studies. Current nutrition reports, 2018. 7(4): p. 171-182.
  322. Khoramdad, M., et al., Dairy products consumption and risk of type 2 diabetes: a systematic review and meta-analysis of prospective cohort studies. Iranian Red Crescent Medical Journal, 2017. 19(7).
  323. Khoramdad, M., et al., The effect of dairy products subgroups consumption on the risk of diabetes: a systematic review and meta-analysis. Iranian Red Crescent Medical Journal, 2017. 19(3).
  324. Chen, M., et al., Effects of dairy intake on body weight and fat: a meta-analysis of randomized controlled trials. The American journal of clinical nutrition, 2012. 96(4): p. 735-747.
  325. Benatar, J.R., K. Sidhu, and R.A. Stewart, Effects of high and low fat dairy food on cardio-metabolic risk factors: a meta-analysis of randomized studies. PLoS One, 2013. 8(10): p. e76480.
  326. Maersk, M., et al., Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: a 6-mo randomized intervention study. The American journal of clinical nutrition, 2012. 95(2): p. 283-289.
  327. Maki, K.C., et al., Sugar-sweetened product consumption alters glucose homeostasis compared with dairy product consumption in men and women at risk of type 2 diabetes mellitus. J Nutr, 2015. 145(3): p. 459-66.
  328. Alexander, D.D., et al., Dairy consumption and CVD: a systematic review and meta-analysis. The British journal of nutrition, 2016. 115(4): p. 737-50.
  329. Guo, J., et al., Milk and dairy consumption and risk of cardiovascular diseases and all-cause mortality: dose-response meta-analysis of prospective cohort studies. Eur J Epidemiol, 2017. 32(4): p. 269-287.
  330. Zhang, K., et al., Fermented dairy foods intake and risk of cardiovascular diseases: A meta-analysis of cohort studies. Crit Rev Food Sci Nutr, 2020. 60(7): p. 1189-1194.
  331. Wu, L. and D. Sun, Consumption of Yogurt and the Incident Risk of Cardiovascular Disease: A Meta-Analysis of Nine Cohort Studies. Nutrients, 2017. 9(3).
  332. Chen, G.C., et al., Cheese consumption and risk of cardiovascular disease: a meta-analysis of prospective studies. Eur J Nutr, 2017. 56(8): p. 2565-2575.
  333. Hjerpsted, J. and T. Tholstrup, Cheese and cardiovascular disease risk: a review of the evidence and discussion of possible mechanisms. Critical reviews in food science and nutrition, 2016. 56(8): p. 1389-1403.
  334. de Goede, J., et al., Effect of cheese consumption on blood lipids: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev, 2015. 73(5): p. 259-75.
  335. Virtanen, S.M., et al., Early introduction of dairy products associated with increased risk of IDDM in Finnish children. Diabetes, 1993. 42(12): p. 1786-1790.
  336. Verge, C.F., et al., Environmental factors in childhood IDDM: a population-based, case-control study. Diabetes care, 1994. 17(12): p. 1381-1389.
  337. Rosenbauer, J., P. Herzig, and G. Giani, Early infant feeding and risk of type 1 diabetes mellitus—a nationwide population‐based case–control study in pre‐school children. Diabetes/metabolism research and reviews, 2008. 24(3): p. 211-222.
  338. Knip, M., et al., Effect of hydrolyzed infant formula vs conventional formula on risk of type 1 diabetes: the TRIGR randomized clinical trial. Jama, 2018. 319(1): p. 38-48.
  339. Norris, J.M., et al., Timing of initial cereal exposure in infancy and risk of islet autoimmunity. Jama, 2003. 290(13): p. 1713-1720.
  340. Ziegler, A.-G., et al., Early infant feeding and risk of developing type 1 diabetes–associated autoantibodies. Jama, 2003. 290(13): p. 1721-1728.
  341. Couper, J.J., et al., Lack of association between duration of breast-feeding or introduction of cow's milk and development of islet autoimmunity. Diabetes, 1999. 48(11): p. 2145-2149.
  342. Frederiksen, B., et al., Infant exposures and development of type 1 diabetes mellitus: The Diabetes Autoimmunity Study in the Young (DAISY). JAMA pediatrics, 2013. 167(9): p. 808-815.
  343. Jiang, D.Q., et al., Efficacy and safety of prostaglandin E1 plus lipoic acid combination therapy versus monotherapy for patients with diabetic peripheral neuropathy. J Clin Neurosci, 2016. 27: p. 8-16.
  344. Jiang, D.Q., et al., Effects of prostaglandin E1 plus methylcobalamin alone and in combination with lipoic acid on nerve conduction velocity in patients with diabetic peripheral neuropathy: A meta-analysis. Neurosci Lett, 2015. 594: p. 23-9.
  345. Jiang, D.Q., et al., Fasudil combined with methylcobalamin or lipoic acid can improve the nerve conduction velocity in patients with diabetic peripheral neuropathy: A meta-analysis. Medicine (Baltimore), 2018. 97(27): p. e11390.
  346. Nguyen, N. and J.K. Takemoto, A Case for Alpha-Lipoic Acid as an Alternative Treatment for Diabetic Polyneuropathy. J Pharm Pharm Sci, 2018. 21(1s): p. 177s-191s.
  347. Wang, X., et al., Alpha lipoic acid combined with epalrestat: a therapeutic option for patients with diabetic peripheral neuropathy. Drug Des Devel Ther, 2018. 12: p. 2827-2840.
  348. Papanas, N. and D. Ziegler, Efficacy of alpha-lipoic acid in diabetic neuropathy. Expert Opin Pharmacother, 2014. 15(18): p. 2721-31.
  349. Cakici, N., et al., Systematic review of treatments for diabetic peripheral neuropathy. Diabet Med, 2016. 33(11): p. 1466-1476.
  350. Koch, W., Dietary Polyphenols—Important Non-Nutrients in the Prevention of Chronic Noncommunicable Diseases. A Systematic Review. Nutrients, 2019. 11(5): p. 1039.
  351. Rienks, J., et al., Polyphenol exposure and risk of type 2 diabetes: dose-response meta-analyses and systematic review of prospective cohort studies. The American journal of clinical nutrition, 2018. 108(1): p. 49-61.
  352. Coe, S. and L. Ryan, Impact of polyphenol-rich sources on acute postprandial glycaemia: a systematic review. Journal of nutritional science, 2016. 5: p. e24-e24.
  353. Del Bo, C., et al., Systematic review on polyphenol intake and health outcomes: is there sufficient evidence to define a health-promoting polyphenol-rich dietary pattern? Nutrients, 2019. 11(6): p. 1355.
  354. Nova, E., et al., Potential of Moringa oleifera to Improve Glucose Control for the Prevention of Diabetes and Related Metabolic Alterations: A Systematic Review of Animal and Human Studies. Nutrients, 2020. 12(7): p. 2050.
  355. Rambaran, T.F., et al., Effect of Berry Polyphenols on Glucose Metabolism: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Current Developments in Nutrition, 2020. 4(7): p. nzaa100.
  356. Zhao, H., et al., Effect of resveratrol on blood lipid levels in patients with type 2 diabetes: A systematic review and meta‐analysis. Obesity, 2019. 27(1): p. 94-102.
  357. Guo, X.-F., et al., Effects of resveratrol supplementation on risk factors of non-communicable diseases: A meta-analysis of randomized controlled trials. Critical reviews in food science and nutrition, 2018. 58(17): p. 3016-3029.
  358. Hausenblas, H.A., J.A. Schoulda, and J.M. Smoliga, Resveratrol treatment as an adjunct to pharmacological management in type 2 diabetes mellitus—systematic review and meta‐analysis. Molecular nutrition & food research, 2015. 59(1): p. 147-159.
  359. Jeyaraman, M.M., et al., Resveratrol for adults with type 2 diabetes mellitus. Cochrane Database Syst Rev, 2020. 1(1): p. Cd011919.
  360. Palma-Duran, S.A., et al., Nutritional intervention and impact of polyphenol on glycohemoglobin (HbA1c) in non-diabetic and type 2 diabetic subjects: Systematic review and meta-analysis. Crit Rev Food Sci Nutr, 2017. 57(5): p. 975-986.
  361. Guo, X.-f., et al., Flavonoid subclasses and type 2 diabetes mellitus risk: A meta-analysis of prospective cohort studies. Critical reviews in food science and nutrition, 2019. 59(17): p. 2850-2862.
  362. Yuan, S., et al., Chocolate consumption and risk of coronary heart disease, stroke, and diabetes: a meta-analysis of prospective studies. Nutrients, 2017. 9(7): p. 688.
  363. Huang, F.-Y., et al., Dietary ginger as a traditional therapy for blood sugar control in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Medicine, 2019. 98(13): p. e15054-e15054.
  364. Zhu, J., et al., Effects of Ginger (Zingiber officinale Roscoe) on Type 2 Diabetes Mellitus and Components of the Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Evid Based Complement Alternat Med, 2018. 2018: p. 5692962.
  365. Namazi, N., et al., The impact of cinnamon on anthropometric indices and glycemic status in patients with type 2 diabetes: A systematic review and meta-analysis of clinical trials. Complement Ther Med, 2019. 43: p. 92-101.
  366. Shabani, E., K. Sayemiri, and M. Mohammadpour, The effect of garlic on lipid profile and glucose parameters in diabetic patients: A systematic review and meta-analysis. Primary care diabetes, 2019. 13(1): p. 28-42.
  367. Grosso, G., et al., Coffee, caffeine, and health outcomes: an umbrella review. Annual review of nutrition, 2017. 37: p. 131-156.
  368. Carlstrom, M. and S.C. Larsson, Coffee consumption and reduced risk of developing type 2 diabetes: a systematic review with meta-analysis. Nutr Rev, 2018. 76(6): p. 395-417.
  369. Kim, Y., Y. Je, and E. Giovannucci, Coffee consumption and all-cause and cause-specific mortality: a meta-analysis by potential modifiers. Eur J Epidemiol, 2019. 34(8): p. 731-752.
  370. Kwok, M.K., G.M. Leung, and C.M. Schooling, Habitual coffee consumption and risk of type 2 diabetes, ischemic heart disease, depression and Alzheimer’s disease: a Mendelian randomization study. Scientific reports, 2016. 6: p. 36500.
  371. Nordestgaard, A.T., M. Thomsen, and B.G. Nordestgaard, Coffee intake and risk of obesity, metabolic syndrome and type 2 diabetes: a Mendelian randomization study. International journal of epidemiology, 2015. 44(2): p. 551-565.
  372. Kondo, Y., et al., Effects of coffee and tea consumption on glucose metabolism: a systematic review and network meta-analysis. Nutrients, 2019. 11(1): p. 48.
  373. Dewar, L. and R. Heuberger, The effect of acute caffeine intake on insulin sensitivity and glycemic control in people with diabetes. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2017. 11: p. S631-S635.
  374. Gezondheidsraad, Koffie - Achtergronddocument bij Richtlijnen goede voeding 2015. 2015: Gezondheidsraad.
  375. Fardet, A. and Y. Boirie, Associations between food and beverage groups and major diet-related chronic diseases: an exhaustive review of pooled/meta-analyses and systematic reviews. Nutr Rev, 2014. 72(12): p. 741-62.
  376. Yang, W.S., et al., Tea consumption and risk of type 2 diabetes: a dose-response meta-analysis of cohort studies. The British journal of nutrition, 2014. 111(8): p. 1329-39.
  377. Ferreira, M.A., et al., Therapeutic potential of green tea on risk factors for type 2 diabetes in obese adults - a review. Obes Rev, 2016. 17(12): p. 1316-1328.
  378. Jing, Y., et al., Tea consumption and risk of type 2 diabetes: a meta-analysis of cohort studies. J Gen Intern Med, 2009. 24(5): p. 557-62.
  379. Li, Y., et al., Effects of tea or tea extract on metabolic profiles in patients with type 2 diabetes mellitus: a meta-analysis of ten randomized controlled trials. Diabetes Metab Res Rev, 2016. 32(1): p. 2-10.
  380. Gezondheidsraad, Zuivel - Achtergronddocument bij Richtlijnen goede voeding 2015. 2015: Gezondheidsraad.
  381. Liang, J., et al., Biomarkers of dairy fat intake and risk of cardiovascular disease: A systematic review and meta analysis of prospective studies. Crit Rev Food Sci Nutr, 2018. 58(7): p. 1122-1130.
  382. Turton, J., et al., An evidence‐based approach to developing low‐carbohydrate diets for type 2 diabetes management: A systematic review of interventions and methods. Diabetes, Obesity and Metabolism, 2019. 21(11): p. 2513-2525.
  383. Turton, J.L., R. Raab, and K.B. Rooney, Low-carbohydrate diets for type 1 diabetes mellitus: A systematic review. PloS one, 2018. 13(3): p. e0194987-e0194987.
  384. Ranjan, A., et al., Low-carbohydrate diet impairs the effect of glucagon in the treatment of insulin-induced mild hypoglycemia: a randomized crossover study. Diabetes Care, 2017. 40(1): p. 132-135.
  385. Schmidt, S., et al., Low versus high carbohydrate diet in type 1 diabetes: A 12‐week randomized open‐label crossover study. Diabetes, Obesity and Metabolism, 2019. 21(7): p. 1680-1688.
  386. Leow, Z., et al., The glycaemic benefits of a very‐low‐carbohydrate ketogenic diet in adults with Type 1 diabetes mellitus may be opposed by increased hypoglycaemia risk and dyslipidaemia. Diabetic Medicine, 2018. 35(9): p. 1258-1263.
  387. Danne, T., et al., International consensus on risk management of diabetic ketoacidosis in patients with type 1 diabetes treated with sodium–glucose cotransporter (SGLT) inhibitors. Diabetes Care, 2019. 42(6): p. 1147-1154.
  388. Seckold, R., et al., The ups and downs of low-carbohydrate diets in the management of Type 1 diabetes: a review of clinical outcomes. Diabet Med, 2019. 36(3): p. 326-334.
  389. Bolla, A.M., et al., Low-carb and ketogenic diets in type 1 and type 2 diabetes. Nutrients, 2019. 11(5): p. 962.
  390. McArdle, P., et al., Carbohydrate restriction for glycaemic control in Type 2 diabetes: a systematic review and meta‐analysis. Diabetic Medicine, 2019. 36(3): p. 335-348.
  391. Shai, I., et al., Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. New England Journal of Medicine, 2008. 359(3): p. 229-241.
  392. Iqbal, N., et al., Effects of a low‐intensity intervention that prescribed a low‐carbohydrate vs. a low‐fat diet in obese, diabetic participants. Obesity, 2010. 18(9): p. 1733-1738.
  393. Krebs, J., et al., The Diabetes Excess Weight Loss (DEWL) Trial: a randomised controlled trial of high-protein versus high-carbohydrate diets over 2 years in type 2 diabetes. Diabetologia, 2012. 55(4): p. 905-914.
  394. Guldbrand, H., et al., In type 2 diabetes, randomisation to advice to follow a low-carbohydrate diet transiently improves glycaemic control compared with advice to follow a low-fat diet producing a similar weight loss. Diabetologia, 2012. 55(8): p. 2118-2127.
  395. Tay, J., et al., Effects of an energy‐restricted low‐carbohydrate, high unsaturated fat/low saturated fat diet versus a high‐carbohydrate, low‐fat diet in type 2 diabetes: a 2‐year randomized clinical trial. Diabetes, Obesity and Metabolism, 2018. 20(4): p. 858-871.
  396. Saslow, L.R., et al., An Online Intervention Comparing a Very Low-Carbohydrate Ketogenic Diet and Lifestyle Recommendations Versus a Plate Method Diet in Overweight Individuals With Type 2 Diabetes: A Randomized Controlled Trial. J Med Internet Res, 2017. 19(2): p. e36.
  397. De Bont, A., et al., A randomised controlled trial of the effect of low fat diet advice on dietary response in insulin independent diabetic women. Diabetologia, 1981. 21(6): p. 529-533.
  398. Snorgaard, O., et al., Systematic review and meta-analysis of dietary carbohydrate restriction in patients with type 2 diabetes. BMJ Open Diabetes Research and Care, 2017. 5(1).
  399. Neuenschwander, M., et al., Impact of different dietary approaches on blood lipid control in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. Eur J Epidemiol, 2019. 34(9): p. 837-852.
  400. Larsen, R.N., et al., The effect of high-protein, low-carbohydrate diets in the treatment of type 2 diabetes: a 12 month randomised controlled trial. Diabetologia, 2011. 54(4): p. 731-740.
  401. Suyoto, P.S.T., Effect of low-carbohydrate diet on markers of renal function in patients with type 2 diabetes: A meta-analysis. Diabetes Metab Res Rev, 2018. 34(7): p. e3032.
  402. Seidelmann, S.B., et al., Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. The Lancet Public Health, 2018. 3(9): p. e419-e428.
  403. Van der Zijl, N.d.W., Tamara; Kuipers, Elise; van Veen-Bouwman, Mariette; Uytendaal, Melanie; van Strijp, Sandra; de Groot, Nicole; Verhoeven, Simon; Bilo, Henk, Handleiding demedicaliseren bij diabetes mellitus type 2. 2018.
  404. Diabetes Prevention Program Research Group, The Diabetes Prevention Program (DPP): description of lifestyle intervention. Diabetes care, 2002. 25(12): p. 2165-2171.
  405. Eriksson, J., et al., Prevention of type II diabetes in subjects with impaired glucose tolerance: The Diabetes Prevention Study (DPS) in Finland Study design and 1-year interim report on the feasibility of the lifestyle intervention programme. Diabetologia, 1999. 42(7): p. 793-801.
  406. Pan, X.-R., et al., Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance: the Da Qing IGT and Diabetes Study. Diabetes care, 1997. 20(4): p. 537-544.
  407. Sylvetsky, A.C., et al., A High-Carbohydrate, High-Fiber, Low-Fat Diet Results in Weight Loss among Adults at High Risk of Type 2 Diabetes. J Nutr, 2017. 147(11): p. 2060-2066.
  408. Lindström, J., et al., High-fibre, low-fat diet predicts long-term weight loss and decreased type 2 diabetes risk: the Finnish Diabetes Prevention Study. Diabetologia, 2006. 49(5): p. 912-920.
  409. Fortin, A., et al., Comparison of a Mediterranean to a low-fat diet intervention in adults with type 1 diabetes and metabolic syndrome: A 6–month randomized trial. Nutrition, Metabolism and Cardiovascular Diseases, 2018. 28(12): p. 1275-1284.
  410. Wolever, T.M., et al., The Canadian Trial of Carbohydrates in Diabetes (CCD), a 1-y controlled trial of low-glycemic-index dietary carbohydrate in type 2 diabetes: no effect on glycated hemoglobin but reduction in C-reactive protein. The American journal of clinical nutrition, 2008. 87(1): p. 114-125.
  411. Davis, N.J., et al., Comparative study of the effects of a 1-year dietary intervention of a low-carbohydrate diet versus a low-fat diet on weight and glycemic control in type 2 diabetes. Diabetes care, 2009. 32(7): p. 1147-1152.
  412. Lu, M., et al., Effects of low-fat compared with high-fat diet on cardiometabolic indicators in people with overweight and obesity without overt metabolic disturbance: A systematic review and meta-analysis of randomised controlled trials. British Journal of Nutrition, 2018. 119(1): p. 96-108.
  413. Saulle, R., et al., A systematic overview of the scientific literature on the association between Mediterranean Diet and the Stroke prevention. Clin Ter, 2019. 170(5): p. e396-e408.
  414. Davis, C., et al., Definition of the Mediterranean Diet; a Literature Review. Nutrients, 2015. 7(11): p. 9139-9153.
  415. Stefler, D., et al., Mediterranean diet score and total and cardiovascular mortality in Eastern Europe: the HAPIEE study. European Journal of Nutrition, 2017. 56(1): p. 421-429.
  416. Hodge, A.M., et al., Dietary inflammatory index or Mediterranean diet score as risk factors for total and cardiovascular mortality. Nutrition, Metabolism and Cardiovascular Diseases, 2018. 28(5): p. 461-469.
  417. Koloverou, E., et al., The effect of Mediterranean diet on the development of type 2 diabetes mellitus: a meta-analysis of 10 prospective studies and 136,846 participants. Metabolism, 2014. 63(7): p. 903-911.
  418. Schwingshackl, L., et al., Adherence to a Mediterranean diet and risk of diabetes: a systematic review and meta-analysis. Public health nutrition, 2015. 18(7): p. 1292-1299.
  419. Bloomfield, H.E., et al., Effects on health outcomes of a Mediterranean diet with no restriction on fat intake: a systematic review and meta-analysis. Annals of internal medicine, 2016. 165(7): p. 491-500.
  420. García-Fernández, E., et al., Mediterranean diet and cardiodiabesity: a review. Nutrients, 2014. 6(9): p. 3474-3500.
  421. Franquesa, M., et al., Mediterranean diet and cardiodiabesity: A systematic review through evidence-based answers to key clinical questions. Nutrients, 2019. 11(3): p. 655.
  422. Salas-Salvadó, J., et al., Erratum. Reduction in the Incidence of Type 2 Diabetes With the Mediterranean Diet: Results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care 2011;34:14-19. Diabetes care, 2018. 41(10): p. 2259-2260.
  423. Toobert, D.J., et al., Biologic and quality-of-life outcomes from the Mediterranean Lifestyle Program: a randomized clinical trial. Diabetes care, 2003. 26(8): p. 2288-2293.
  424. Toobert, D.J., et al., Long-term outcomes from a multiple-risk-factor diabetes trial for Latinas:¡ Viva Bien! Translational behavioral medicine, 2011. 1(3): p. 416-426.
  425. Huo, R., et al., Effects of Mediterranean-style diet on glycemic control, weight loss and cardiovascular risk factors among type 2 diabetes individuals: a meta-analysis. European journal of clinical nutrition, 2015. 69(11): p. 1200-1208.
  426. Esposito, K., et al., A journey into a Mediterranean diet and type 2 diabetes: a systematic review with meta-analyses. BMJ open, 2015. 5(8): p. e008222.
  427. Esposito, K., et al., Effects of a Mediterranean-style diet on the need for antihyperglycemic drug therapy in patients with newly diagnosed type 2 diabetes: a randomized trial. Annals of internal medicine, 2009. 151(5): p. 306-314.
  428. Elhayany, A., et al., A low carbohydrate Mediterranean diet improves cardiovascular risk factors and diabetes control among overweight patients with type 2 diabetes mellitus: a 1‐year prospective randomized intervention study. Diabetes, Obesity and Metabolism, 2010. 12(3): p. 204-209.
  429. Brehm, B.J., et al., One-year comparison of a high–monounsaturated fat diet with a high-carbohydrate diet in type 2 diabetes. Diabetes care, 2009. 32(2): p. 215-220.
  430. Maiorino, M.I., et al., Effect of a Mediterranean diet on endothelial progenitor cells and carotid intima-media thickness in type 2 diabetes: follow-up of a randomized trial. European journal of preventive cardiology, 2017. 24(4): p. 399-408.
  431. Estruch, R., et al., Primary prevention of cardiovascular disease with a Mediterranean diet. New England Journal of Medicine, 2013. 368(14): p. 1279-1290.
  432. Salehi-Abargouei, A., et al., Effects of Dietary Approaches to Stop Hypertension (DASH)-style diet on fatal or nonfatal cardiovascular diseases--incidence: a systematic review and meta-analysis on observational prospective studies. Nutrition, 2013. 29(4): p. 611-8.
  433. Schwingshackl, L., B. Bogensberger, and G. Hoffmann, Diet Quality as Assessed by the Healthy Eating Index, Alternate Healthy Eating Index, Dietary Approaches to Stop Hypertension Score, and Health Outcomes: An Updated Systematic Review and Meta-Analysis of Cohort Studies. J Acad Nutr Diet, 2018. 118(1): p. 74-100.e11.
  434. Esposito, K., et al., Which diet for prevention of type 2 diabetes? A meta-analysis of prospective studies. Endocrine, 2014. 47(1): p. 107-16.
  435. Chiavaroli, L., et al., DASH Dietary Pattern and Cardiometabolic Outcomes: An Umbrella Review of Systematic Reviews and Meta-Analyses. Nutrients, 2019. 11(2).
  436. Shirani, F., A. Salehi-Abargouei, and L. Azadbakht, Effects of Dietary Approaches to Stop Hypertension (DASH) diet on some risk for developing type 2 diabetes: a systematic review and meta-analysis on controlled clinical trials. Nutrition, 2013. 29(7-8): p. 939-47.
  437. Liese, A.D., et al., Association of DASH diet with cardiovascular risk factors in youth with diabetes mellitus: the SEARCH for Diabetes in Youth study. Circulation, 2011. 123(13): p. 1410-7.
  438. Barnes, T.L., et al., Change in DASH diet score and cardiovascular risk factors in youth with type 1 and type 2 diabetes mellitus: The SEARCH for Diabetes in Youth Study. Nutr Diabetes, 2013. 3: p. e91.
  439. Liese, A.D., et al., Dietary quality and markers of inflammation: No association in youth with type 1 diabetes. J Diabetes Complications, 2018. 32(2): p. 179-184.
  440. Peairs, A.D., et al., Effects of the dietary approaches to stop hypertension (DASH) diet on glucose variability in youth with Type 1 diabetes. Diabetes Manag (Lond), 2017. 7(5): p. 383-391.
  441. Azadbakht, L., et al., Effects of the Dietary Approaches to Stop Hypertension (DASH) eating plan on cardiovascular risks among type 2 diabetic patients: a randomized crossover clinical trial. Diabetes Care, 2011. 34(1): p. 55-7.
  442. Lee, Y. and K. Park, Adherence to a Vegetarian Diet and Diabetes Risk: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients, 2017. 9(6).
  443. Chiu, T.H.T., et al., Vegetarian diet, change in dietary patterns, and diabetes risk: a prospective study. Nutr Diabetes, 2018. 8(1): p. 12.
  444. Malik, V.S., et al., Dietary Protein Intake and Risk of Type 2 Diabetes in US Men and Women. American journal of epidemiology, 2016. 183(8): p. 715-28.
  445. Tonstad, S., et al., Vegetarian diets and incidence of diabetes in the Adventist Health Study-2. Nutr Metab Cardiovasc Dis, 2013. 23(4): p. 292-9.
  446. Ahola, A., C. Forsblom, and P.-H. Groop, Adherence to special diets and its association with meeting the nutrient recommendations in individuals with type 1 diabetes. Acta diabetologica, 2018. 55(8): p. 843-851.
  447. Yokoyama, Y., et al., Vegetarian diets and glycemic control in diabetes: a systematic review and meta-analysis. Cardiovasc Diagn Ther, 2014. 4(5): p. 373-82.
  448. Barnard, N.D., et al., A low-fat vegan diet improves glycemic control and cardiovascular risk factors in a randomized clinical trial in individuals with type 2 diabetes. Diabetes Care, 2006. 29(8): p. 1777-83.
  449. Voedingscentrum. Vegetarisch, veganistisch en flexitarisch eten. 2018  24-03-2020]; Available from: https://www.voedingscentrum.nl/encyclopedie/vegetarisme-veganisme.aspx.
  450. Andrikopoulos, S., The Paleo diet and diabetes. The Medical Journal of Australia, 2016. 205(4): p. 151-152.
  451. Jönsson, T., et al., Beneficial effects of a Paleolithic diet on cardiovascular risk factors in type 2 diabetes: a randomized cross-over pilot study. Cardiovascular diabetology, 2009. 8(1): p. 35.
  452. Lindeberg, S., et al., A Palaeolithic diet improves glucose tolerance more than a Mediterranean-like diet in individuals with ischaemic heart disease. Diabetologia, 2007. 50(9): p. 1795-1807.
  453. Masharani, U., et al., Metabolic and physiologic effects from consuming a hunter-gatherer (Paleolithic)-type diet in type 2 diabetes. European journal of clinical nutrition, 2015. 69(8): p. 944-948.
  454. Jonsson, T., et al., Subjective satiety and other experiences of a Paleolithic diet compared to a diabetes diet in patients with type 2 diabetes. Nutr J, 2013. 12: p. 105.
  455. Gezondheidsraad, Richtlijnen goede voeding 2015. 2015: Gezondheidsraad.
  456. Voedingscentrum. Oerdieet (Paleodieet). 2018; Available from: https://www.voedingscentrum.nl/encyclopedie/paleo-oerdieet.aspx.
  457. Monteiro, C.A., et al., Ultra-processed foods, diet quality, and health using the NOVA classification system. FAO: Rome, 2019.
  458. Machado, P.P., et al., Ultra-processed foods and recommended intake levels of nutrients linked to non-communicable diseases in Australia: evidence from a nationally representative cross-sectional study. BMJ open, 2019. 9(8): p. e029544.
  459. Voedingscentrum. Is onbewerkt eten zonder pakjes en zakjes gezonder? 2018; Available from: https://www.voedingscentrum.nl/nl/service/vraag-en-antwoord/gezonde-voeding-en-voedingsstoffen/is-onbewerkt-zonder-pakjes-zakjes-en-kant-en-klaarmaaltijden-altijd-gezonder-.aspx.
  460. Srour, B., et al., Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé). BMJ (Clinical research ed.), 2019. 365: p. l1451-l1451.
  461. Ley, S.H., et al., Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet (London, England), 2014. 383(9933): p. 1999-2007.
  462. Canhada, S.L., et al., Ultra-processed foods, incident overweight and obesity, and longitudinal changes in weight and waist circumference: the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Public Health Nutrition, 2019: p. 1-11.
  463. Mendonça, R.d.D., et al., Ultraprocessed food consumption and risk of overweight and obesity: the University of Navarra Follow-Up (SUN) cohort study. The American journal of clinical nutrition, 2016. 104(5): p. 1433-1440.
  464. Monteiro, C.A., et al., Household availability of ultra-processed foods and obesity in nineteen European countries. Public health nutrition, 2018. 21(1): p. 18-26.
  465. Ruanpeng, D., et al., Sugar and artificially sweetened beverages linked to obesity: a systematic review and meta-analysis. QJM: An International Journal of Medicine, 2017. 110(8): p. 513-520.
  466. Gibson, A.A. and A. Sainsbury, Strategies to improve adherence to dietary weight loss interventions in research and real-world settings. Behavioral Sciences, 2017. 7(3): p. 44.
  467. Krzewska, A. and I. Ben-Skowronek, Effect of Associated Autoimmune Diseases on Type 1 Diabetes Mellitus Incidence and Metabolic Control in Children and Adolescents. BioMed research international, 2016. 2016: p. 6219730.
  468. Kahaly, G.J., L. Frommer, and D. Schuppan, Celiac disease and endocrine autoimmunity - the genetic link. Autoimmunity Reviews, 2018. 17(12): p. 1169-1175.
  469. Verdu, E.F. and J.S. Danska, Common ground: shared risk factors for type 1 diabetes and celiac disease. Nat Immunol, 2018. 19(7): p. 685-695.
  470. Kakleas, K., et al., Associated autoimmune diseases in children and adolescents with type 1 diabetes mellitus (T1DM). Autoimmunity Reviews, 2015. 14(9): p. 781-97.
  471. Mulder, C., CBO-richtlijn Coeliakie en Dermatitis Herpetiformis. Haarlem: Nederlandse Vereniging van Maag-Darm-Leverartsen, 2008.
  472. Voedingscentrum. Gluten en het glutenvrij dieet. 2019; Available from: https://www.voedingscentrum.nl/encyclopedie/gluten-en-het-glutenvrij-dieet.aspx#blok7.
  473. Farmacotherapeutisch kompas. GLP1-agonisten. Available from: https://www.farmacotherapeutischkompas.nl/bladeren/groepsteksten/glp1_agonisten.
  474. Langworthy, J., H.P. Parkman, and R. Schey, Emerging strategies for the treatment of gastroparesis. Expert Rev Gastroenterol Hepatol, 2016. 10(7): p. 817-25.
  475. Marathe, C.S., et al., Novel insights into the effects of diabetes on gastric motility. Expert Rev Gastroenterol Hepatol, 2016. 10(5): p. 581-93.
  476. Stein, B., K.K. Everhart, and B.E. Lacy, Gastroparesis: A Review of Current Diagnosis and Treatment Options. J Clin Gastroenterol, 2015. 49(7): p. 550-8.
  477. Abell, T., et al., Treatment of gastroparesis: a multidisciplinary clinical review: The American Motility Society Task Force on Gastroparesis (members in alphabetical order). Neurogastroenterology & Motility, 2006. 18(4): p. 263-283.
  478. Abrahamsson, H., Treatment options for patients with severe gastroparesis. Gut, 2007. 56(6): p. 877-83.
  479. Parrish, C.R. and J.G. Pastors, Nutritional management of gastroparesis in people with diabetes. Diabetes Spectrum, 2007. 20(4): p. 231-234.
  480. Ojo, O., et al., The effect of diabetes-specific enteral nutrition formula on cardiometabolic parameters in patients with type 2 diabetes: a systematic review and meta–analysis of randomised controlled trials. Nutrients, 2019. 11(8): p. 1905.
  481. Ojo, O. and J. Brooke, Evaluation of the role of enteral nutrition in managing patients with diabetes: a systematic review. Nutrients, 2014. 6(11): p. 5142-5152.
  482. Sanz-Paris, A., et al., Evidence-based recommendations and expert consensus on enteral nutrition in the adult patient with diabetes mellitus or hyperglycemia. Nutrition, 2017. 41: p. 58-67.
  483. De Paoli, T. and P.J. Rogers, Disordered eating and insulin restriction in type 1 diabetes: A systematic review and testable model. Eat Disord, 2018. 26(4): p. 343-360.
  484. Nieto-Martinez, R., et al., Are Eating Disorders Risk Factors for Type 2 Diabetes? A Systematic Review and Meta-analysis. Curr Diab Rep, 2017. 17(12): p. 138.
  485. Garcia-Mayor, R.V. and F.J. Garcia-Soidan, Eating disoders in type 2 diabetic people: Brief review. Diabetes Metab Syndr, 2017. 11(3): p. 221-224.
  486. Dominguez Coello, S., et al., Effectiveness of a low-fructose and/or low-sucrose diet in decreasing insulin resistance (DISFRUTE study): study protocol for a randomized controlled trial. Trials, 2017. 18(1): p. 369.
  487. Fonolleda, M., et al., Remission phase in paediatric type 1 diabetes: new understanding and emerging biomarkers. Hormone research in paediatrics, 2017. 88(5): p. 307-315.
  488. Tack, C., M. Diamant, and E. de Koning, Handboek Diabetes Mellitus. 2012.
  489. Malki, F., Diabetes in de ramadan, een maand van bezieling. Tijdschrift voor praktijkondersteuning, 2013. 8(3): p. 75-79.
  490. Davidson, P., C.A. Kwiatkowski, and M. Wien, Management of Hyperglycemia and Enteral Nutrition in the Hospitalized Patient. Nutr Clin Pract, 2015. 30(5): p. 652-9.
  491. Riddell, M.C., et al., Exercise management in type 1 diabetes: a consensus statement. The lancet Diabetes & endocrinology, 2017. 5(5): p. 377-390.
  492. Toghi-Eshghi, S.R. and J.E. Yardley, Morning (fasting) vs afternoon resistance exercise in individuals with type 1 diabetes: a randomized crossover study. The Journal of Clinical Endocrinology & Metabolism, 2019. 104(11): p. 5217-5224.
  493. Terada, T., et al., Targeting specific interstitial glycemic parameters with high-intensity interval exercise and fasted-state exercise in type 2 diabetes. Metabolism, 2016. 65(5): p. 599-608.
  494. Gaudet-Savard, T., et al., Safety and magnitude of changes in blood glucose levels following exercise performed in the fasted and the postprandial state in men with type 2 diabetes. European Journal of Cardiovascular Prevention & Rehabilitation, 2007. 14(6): p. 831-836.
  495. Henry, C.J., B. Kaur, and R.Y.C. Quek, Chrononutrition in the management of diabetes. Nutrition & Diabetes, 2020. 10(1): p. 1-11.
  496. Rijksinstituut voor Volksgezondheid en Milieu. Overgewicht. Volksgezondheidenzorg.info 2020  [cited 2020 31 Maart]; Available from: https://www.volksgezondheidenzorg.info/onderwerp/overgewicht/cijfers-context/samenvatting.
  497. Corbin, K.D., et al., Obesity in type 1 diabetes: pathophysiology, clinical impact, and mechanisms. Endocrine reviews, 2018. 39(5): p. 629-663.
  498. Gezondheidsraad, Beweegrichtlijnen 2017. 2017.
  499. Van Binsbergen, J., et al., NHG-standaard obesitas. Huisarts Wet, 2010. 53(11): p. 609-25.
  500. World Health Organization, Obesity: preventing and managing the global epidemic. 2000: World Health Organization.
  501. Drabsch, T. and C. Holzapfel, A Scientific Perspective of Personalised Gene-Based Dietary Recommendations for Weight Management. Nutrients, 2019. 11(3).
  502. Franz, M.J., et al., Lifestyle weight-loss intervention outcomes in overweight and obese adults with type 2 diabetes: a systematic review and meta-analysis of randomized clinical trials. Journal of the Academy of Nutrition and Dietetics, 2015. 115(9): p. 1447-1463.
  503. Voedingscentrum. Dieet. 2018; Available from: https://www.voedingscentrum.nl/encyclopedie/dieet.aspx.
  504. Wolf, A.M., et al., Translating lifestyle intervention to practice in obese patients with type 2 diabetes: Improving Control with Activity and Nutrition (ICAN) study. Diabetes care, 2004. 27(7): p. 1570-1576.
  505. Li, Z., et al., Long-term efficacy of soy-based meal replacements vs an individualized diet plan in obese type II DM patients: relative effects on weight loss, metabolic parameters, and C-reactive protein. European Journal of Clinical Nutrition, 2005. 59(3): p. 411-418.
  506. Kahleova, H., et al., Eating two larger meals a day (breakfast and lunch) is more effective than six smaller meals in a reduced-energy regimen for patients with type 2 diabetes: a randomised crossover study. Diabetologia, 2014. 57(8): p. 1552-1560.
  507. Look AHEAD Research Group, Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the Look AHEAD trial. Diabetes care, 2007. 30(6): p. 1374.
  508. Martenstyn, J., M. King, and C. Rutherford, Impact of weight loss interventions on patient-reported outcomes in overweight and obese adults with type 2 diabetes: a systematic review. Journal of Behavioral Medicine, 2020: p. 1-19.
  509. Pot, G.K., et al., Lifestyle medicine for type 2 diabetes: practice-based evidence for long-term efficacy of a multicomponent lifestyle intervention (Reverse Diabetes2 Now). BMJ Nutrition, Prevention & Health, 2020: p. bmjnph-2020-000081.
  510. Knowler, W.C., et al., Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. The New England journal of medicine, 2002. 346(6): p. 393-403.
  511. Diabetes Prevention Program Research Group, 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. The Lancet, 2009. 374(9702): p. 1677-1686.
  512. Slentz, C.A., et al., Effects of exercise training alone vs a combined exercise and nutritional lifestyle intervention on glucose homeostasis in prediabetic individuals: a randomised controlled trial. Diabetologia, 2016. 59(10): p. 2088-2098.
  513. Duijzer, G., et al., Cost-effectiveness of the SLIMMER diabetes prevention intervention in Dutch primary health care: economic evaluation from a randomised controlled trial. BMC health services research, 2019. 19(1): p. 824.
  514. Ryrie, H., The Role of Diet in the Prevention and Management of Type 2 Diabetes October 2018. 2018.
  515. Brown, A. and A. Leeds, Very low‐energy and low‐energy formula diets: Effects on weight loss, obesity co‐morbidities and type 2 diabetes remission–an update on the evidence for their use in clinical practice. Nutrition Bulletin, 2019. 44(1): p. 7-24.
  516. Huang, Y.S., et al., Efficacy of Intermittent or Continuous Very Low-Energy Diets in Overweight and Obese Individuals with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analyses. J Diabetes Res, 2020. 2020: p. 4851671.
  517. Alkhatib, A., et al., Functional Foods and Lifestyle Approaches for Diabetes Prevention and Management. Nutrients, 2017. 9(12).
  518. Lean, M.E., et al., Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial. The lancet Diabetes & endocrinology, 2019. 7(5): p. 344-355.
  519. Noronha, J.C., et al., The effect of liquid meal replacements on cardiometabolic risk factors in overweight/obese individuals with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetes care, 2019. 42(5): p. 767-776.
  520. Colberg, S.R., et al., Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes care, 2016. 39(11): p. 2065-2079.
  521. Grace, A., et al., Clinical outcomes and glycaemic responses to different aerobic exercise training intensities in type II diabetes: a systematic review and meta-analysis. Cardiovasc Diabetol, 2017. 16(1): p. 37.
  522. Hayashino, Y., et al., Effects of supervised exercise on lipid profiles and blood pressure control in people with type 2 diabetes mellitus: a meta-analysis of randomized controlled trials. Diabetes research and clinical practice, 2012. 98(3): p. 349-360.
  523. Pan, B., et al., Exercise training modalities in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. Int J Behav Nutr Phys Act, 2018. 15(1): p. 72.
  524. Figueira, F.R., et al., Association between physical activity advice only or structured exercise training with blood pressure levels in patients with type 2 diabetes: a systematic review and meta-analysis. Sports Med, 2014. 44(11): p. 1557-72.
  525. Lee, J., D. Kim, and C. Kim, Resistance training for glycemic control, muscular strength, and lean body mass in old type 2 diabetic patients: a meta-analysis. Diabetes Therapy, 2017. 8(3): p. 459-473.
  526. Qiu, S., et al., Impact of walking on glycemic control and other cardiovascular risk factors in type 2 diabetes: a meta-analysis. PloS one, 2014. 9(10): p. e109767-e109767.
  527. Lee, A.S., et al., Effect of High-Intensity Interval Training on Glycemic Control in Adults With Type 1 Diabetes and Overweight or Obesity: A Randomized Controlled Trial With Partial Crossover. Diabetes Care, 2020. 43(9): p. 2281-2288.
  528. Cai, H., et al., Effect of exercise on the quality of life in type 2 diabetes mellitus: a systematic review. Quality of Life Research, 2017. 26(3): p. 515-530.
  529. Carter, S., P.M. Clifton, and J.B. Keogh, The effects of intermittent compared to continuous energy restriction on glycaemic control in type 2 diabetes; a pragmatic pilot trial. Diabetes Res Clin Pract, 2016. 122: p. 106-112.
  530. Carter, S., P.M. Clifton, and J.B. Keogh, Effect of intermittent compared with continuous energy restricted diet on glycemic control in patients with type 2 diabetes: a randomized noninferiority trial. JAMA network open, 2018. 1(3): p. e180756-e180756.
  531. Williams, K.V., et al., The effect of short periods of caloric restriction on weight loss and glycemic control in type 2 diabetes. Diabetes Care, 1998. 21(1): p. 2-8.
  532. Carter, S., P.M. Clifton, and J.B. Keogh, The effect of intermittent compared with continuous energy restriction on glycaemic control in patients with type 2 diabetes: 24-month follow-up of a randomised noninferiority trial. Diabetes Res Clin Pract, 2019. 151: p. 11-19.
  533. Ch'ng, L.Z., et al., Nutritional strategies in managing postmeal glucose for type 2 diabetes: A narrative review. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2019. 13(4): p. 2339-2345.
  534. Jakubowicz, D., et al., High-energy breakfast with low-energy dinner decreases overall daily hyperglycaemia in type 2 diabetic patients: a randomised clinical trial. Diabetologia, 2015. 58(5): p. 912-919.
  535. Park, Y.-M., et al., A high-protein breakfast induces greater insulin and glucose-dependent insulinotropic peptide responses to a subsequent lunch meal in individuals with type 2 diabetes. The Journal of nutrition, 2015. 145(3): p. 452-458.
  536. Grajower, M.M. and B.D. Horne, Clinical Management of Intermittent Fasting in Patients with Diabetes Mellitus. Nutrients, 2019. 11(4): p. 873.
  537. Kompas, F. Obesitas. 2018; Available from: https://www.farmacotherapeutischkompas.nl/bladeren/indicatieteksten/obesitas.
  538. Aldekhail, N.M., et al., Effect of orlistat on glycaemic control in overweight and obese patients with type 2 diabetes mellitus: a systematic review and meta‐analysis of randomized controlled trials. Obesity reviews, 2015. 16(12): p. 1071-1080.
  539. National Institute for Clinical Excellence, Naltrexone–bupropion for managing overweight and obesity. 2017.
  540. Federatie Medisch Specialisten, Morbide obesitas - Nazorg op het gebied van type 2 diabetes. 2011.
  541. O'brien, P.E., et al., Systematic review of medium-term weight loss after bariatric operations. Obesity surgery, 2006. 16(8): p. 1032-1040.
  542. Yan, G., et al., Long-term outcomes of macrovascular diseases and metabolic indicators of bariatric surgery for severe obesity type 2 diabetes patients with a meta-analysis. PloS one, 2019. 14(12): p. e0224828-e0224828.
  543. Park, C.H., et al., Comparative Efficacy of Bariatric Surgery in the Treatment of Morbid Obesity and Diabetes Mellitus: a Systematic Review and Network Meta-Analysis. Obes Surg, 2019. 29(7): p. 2180-2190.
  544. Sjostrom, L., et al., Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. Jama, 2014. 311(22): p. 2297-304.
  545. Padoin, A.V., et al., Obese patients with type 2 diabetes submitted to banded gastric bypass: greater incidence of dumping syndrome. Obesity surgery, 2009. 19(11): p. 1481-1484.
  546. Ashrafian, H., et al., Type 1 Diabetes Mellitus and Bariatric Surgery: A Systematic Review and Meta-Analysis. Obes Surg, 2016. 26(8): p. 1697-704.
  547. Hussain, A., The effect of metabolic surgery on type 1 diabetes: meta-analysis. Archives of endocrinology and metabolism, 2018. 62(2): p. 172-178.
  548. Kirwan, J.P., et al., Bariatric Surgery in Obese Patients With Type 1 Diabetes. Diabetes Care, 2016. 39(6): p. 941-8.
  549. Höskuldsdóttir, G., et al., Design and baseline data in the BAriatic surgery SUbstitution and Nutrition study (BASUN): a 10-year prospective cohort study. BMC endocrine disorders, 2020. 20(1): p. 23-23.
  550. Hoskuldsdottir, G., et al. Type 1 diabetes and obesity: Could bariatric surgery be a safe and beneficial option? in DIABETOLOGIA. 2019. SPRINGER 233 SPRING ST, NEW YORK, NY 10013 USA.
  551. Nederlandse Vereniging van Diëtisten, Beroepsprofiel diëtist 2013. 2014, Datum 10-09-2014. Website:  https://nvdietist.nl/informatie/beroepsprofiel/
  552. Look AHEAD Research Group, Eight‐year weight losses with an intensive lifestyle intervention: the look AHEAD study. Obesity, 2014. 22(1): p. 5-13.
  553. Moncrieft, A.E., et al., Effects of a multicomponent life-style intervention on weight, glycemic control, depressive symptoms, and renal function in low-income, minority patients with type 2 diabetes: results of the community approach to lifestyle modification for diabetes randomized controlled trial. Psychosomatic medicine, 2016. 78(7): p. 851.
  554. Crasto, W., et al., Multifactorial intervention in individuals with type 2 diabetes and microalbuminuria: the Microalbuminuria Education and Medication Optimisation (MEMO) study. Diabetes research and clinical practice, 2011. 93(3): p. 328-336.
  555. Zhang, P., et al., Cost-Effectiveness of Structured Lifestyle Intervention in Overweight and Obese Adults with Type 2 Diabetes—Results from the Action for Health in Diabetes (Look AHEAD) Study. 2018, Am Diabetes Assoc.
  556. Møller, G., H.K. Andersen, and O. Snorgaard, A systematic review and meta-analysis of nutrition therapy compared with dietary advice in patients with type 2 diabetes. The American journal of clinical nutrition, 2017. 106(6): p. 1394-1400.
  557. Nederlands Huisartsen Genootschap, NHG-Standaard Cardiovasculair risicomanagement (CVRM)(derde herziening), in Utrecht: NHG. 2019.
  558. American Diabetes Association, 6. Glycemic Targets: Standards of Medical Care in Diabetes—2020. Diabetes Care, 2020. 43(Supplement 1): p. S66-S76.
  559. Battelino, T., et al., Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range. Diabetes Care, 2019. 42(8): p. 1593-1603.
  560. Nederlandse Internisten Vereniging. DM type 1. 2014; Available from: https://richtlijnendatabase.nl/richtlijn/diabetes_mellitus/dm_type_1.html.
  561. Holtrop, R., Dichter bij diabetes: een praktische handleiding. 2015: Springer.
  562. Alcántara-Aragón, V., et al., Carbohydrate-to-insulin ratio in a Mediterranean population of type 1 diabetic patients on continuous subcutaneous insulin infusion therapy. Journal of diabetes science and technology, 2015. 9(3): p. 588-592.
  563. Inspectie voor de Gezondheidszorg, Vraag over aanpassen dosering, W.e.S. Ministerie van Volksgezondheid, Editor. 2016: Utrecht.
  564. Beroepsvereniging voor Leefstijlcoaches Nederland, Het profiel van de hbo leefstijlcoach. 2016.
  565. Huber, M., et al., Towards a ‘patient-centred’operationalisation of the new dynamic concept of health: a mixed methods study. BMJ open, 2016. 6(1).
  566. Whitmore, J.K., Carol; David, Susan A. , GROW grows up: from winning the game to pursuing transpersonal goals. Beyond goals: effective strategies for coaching and mentoring. 2013.
  567. Nederlands Huisartsen Genootschap, NHG-Zorgmodules Leefstijl. 2015.
  568. Coördinatieplatform Zorgstandaarden en het Kwaliteitsinstituut van VWS, Zorgmodule Zelfmanagement 1.0.
  569. Gerards, F.B., Resi, Health counseling: het adviesgesprek in de (para) medische en verpleegkundige zorg. 2006: Nelissen.
  570. Ekong, G. and J. Kavookjian, Motivational interviewing and outcomes in adults with type 2 diabetes: a systematic review. Patient education and counseling, 2016. 99(6): p. 944-952.
  571. Uchendu, C. and H. Blake, Effectiveness of cognitive–behavioural therapy on glycaemic control and psychological outcomes in adults with diabetes mellitus: a systematic review and meta‐analysis of randomized controlled trials. Diabetic Medicine, 2017. 34(3): p. 328-339.
  572. Wang, Z.-d., et al., Cognitive behavioural therapy on improving the depression symptoms in patients with diabetes: a meta-analysis of randomized control trials. Bioscience reports, 2017. 37(2).
  573. Berk, K.A., et al., Group cognitive behavioural therapy and weight regain after diet in type 2 diabetes: results from the randomised controlled POWER trial. Diabetologia, 2018. 61(4): p. 790-799.
  574. Menting, J., et al., Potential mechanisms involved in the effect of cognitive behavioral therapy on fatigue severity in Type 1 diabetes. Journal of consulting and clinical psychology, 2018. 86(4): p. 330.
  575. Law, E., et al., Psychological interventions for parents of children and adolescents with chronic illness. Cochrane Database of Systematic Reviews, 2019(3).
  576. Shayeghian, Z., et al., A randomized controlled trial of acceptance and commitment therapy for type 2 diabetes management: The moderating role of coping styles. PloS one, 2016. 11(12): p. e0166599.
  577. Kaboudi, M., F. Dehghan, and A. Ziapour, The effect of acceptance and commitment therapy on the mental health of women patients with type II diabetes. Annals of Tropical Medicine and Public Health, 2017. 10(6): p. 1709.
  578. Hadiyan, M., Effectiveness of Acceptance & Commitment Therapy (ACT) on separation anxiety disorders in children with type 1 diabetes. Razi Journal of Medical Sciences, 2018. 24(164): p. 21-34.
  579. Mohammadi, T., et al., The impact of acceptance and commitment therapy on reducing of depression and anxiety in patients with type-1 diabetes. Ebnesina, 2018. 20(1): p. 48-55.
  580. Kashaf, M.S., E.T. McGill, and Z.D. Berger, Shared decision-making and outcomes in type 2 diabetes: A systematic review and meta-analysis. Patient education and counseling, 2017. 100(12): p. 2159-2171.
  581. Den Ouden, H., R.C. Vos, and G. Rutten, Effectiveness of shared goal setting and decision making to achieve treatment targets in type 2 diabetes patients: A cluster-randomized trial (OPTIMAL). Health Expect, 2017. 20(5): p. 1172-1180.
  582. Captieux, M., et al., Supported self-management for people with type 2 diabetes: a meta-review of quantitative systematic reviews. BMJ open, 2018. 8(12): p. e024262-e024262.
  583. Park, C. and Q.A. Le, The Effectiveness of Continuous Glucose Monitoring in Patients with Type 2 Diabetes: A Systematic Review of Literature and Meta-analysis. Diabetes Technol Ther, 2018. 20(9): p. 613-621.
  584. Ida, S., R. Kaneko, and K. Murata, Utility of Real-Time and Retrospective Continuous Glucose Monitoring in Patients with Type 2 Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trials. J Diabetes Res, 2019. 2019: p. 4684815.
  585.  Benkhadra, K., et al., Real-time continuous glucose monitoring in type 1 diabetes: a systematic review and individual patient data meta-analysis. Clin Endocrinol (Oxf), 2017. 86(3): p. 354-360.
  586. Mancini, G., et al., Flash Glucose Monitoring: A Review of the Literature with a Special Focus on Type 1 Diabetes. Nutrients, 2018. 10(8).
  587. Ang, E., et al., Flash glucose monitoring (FGM): A clinical review on glycaemic outcomes and impact on quality of life. J Diabetes Complications, 2020: p. 107559.
  588. Fokkert, M., et al., Improved well-being and decreased disease burden after 1-year use of flash glucose monitoring (FLARE-NL4). BMJ Open Diabetes Research and Care, 2019. 7(1).
  589. Hellmund, R., R. Weitgasser, and D. Blissett, Cost Calculation for a Flash Glucose Monitoring System for Adults with Type 2 Diabetes Mellitus Using Intensive Insulin - a UK Perspective. Eur Endocrinol, 2018. 14(2): p. 86-92.
  590. Bilir, S.P., et al., The Cost-effectiveness of a Flash Glucose Monitoring System for Management of Patients with Type 2 Diabetes Receiving Intensive Insulin Treatment in Sweden. Eur Endocrinol, 2018. 14(2): p. 80-85.
  591. van Drongelen, A., et al., Apps under the medical devices legislation. 2019.
  592. Rietdijk, D. and B. Hart, Diabetes mellitus type 2 bij kinderen met obesitas. Huisarts en wetenschap, 2015. 58(8): p. 438-441.
  593. Seckold, R., et al., Dietary intake and eating patterns of young children with type 1 diabetes achieving glycemic targets. BMJ Open Diabetes Research and Care, 2019. 7(1): p. e000663.
  594. Smart, C.E., et al., ISPAD Clinical Practice Consensus Guidelines 2018: Nutritional management in children and adolescents with diabetes. 2018.
  595. Brown, T., et al., Interventions for preventing obesity in children. Cochrane Database of Systematic Reviews, 2019(7).
  596. Holthe, J.C.-o., et al., JGZ-richtlijn Overgewicht. JGZ Tijdschrift voor jeugdgezondheidszorg, 2012. 44(4): p. 62-68.
  597. Cai, Q.-Y., et al., Safety and tolerability of the ketogenic diet used for the treatment of refractory childhood epilepsy: a systematic review of published prospective studies. World Journal of Pediatrics, 2017. 13(6): p. 528-536.
  598. Zeitler, P., et al., ISPAD clinical practice consensus guidelines 2018: type 2 diabetes mellitus in youth. Pediatric diabetes, 2018. 19: p. 28-46.
  599. Hanson, F. and J. Brown, Low-carbohydrate diets for children and young people with type 1 diabetes: Unpicking the evidence. Journal of Diabetes Nursing, 2019. 23(5).
  600. Maahs, D.M., et al., Dyslipidemia in youth with diabetes: to treat or not to treat? The Journal of pediatrics, 2008. 153(4): p. 458-465. e4.
  601. Rahbar, A. and A. Hajian, Dyslipidemia frequency and related factors to blood in children suffering from type 1 diabetes. 2017.
  602. Voedingscentrum. Verhouding plantaardig en dierlijk eiwit. 2018; Available from: https://www.voedingscentrum.nl/nl/pers/standpunten/verhouding-plantaardig-en-dierlijk-eiwit.aspx.
  603. Leyvraz, M., et al., Sodium intake and blood pressure in children and adolescents: a systematic review and meta-analysis of experimental and observational studies. International journal of epidemiology, 2018. 47(6): p. 1796-1810.
  604. Anderson, J., et al., Dietary sodium intake relates to vascular health in children with type 1 diabetes. Pediatric diabetes, 2018. 19(1): p. 138-142.
  605. Bjerregaard, L.G., et al., Change in Overweight from Childhood to Early Adulthood and Risk of Type 2 Diabetes. N Engl J Med, 2018. 378(14): p. 1302-1312.
  606. Mead, E., et al., Diet, physical activity and behavioural interventions for the treatment of overweight or obese children from the age of 6 to 11 years. Cochrane Database of Systematic Reviews, 2017(6).
  607. Al‐Khudairy, L., et al., Diet, physical activity and behavioural interventions for the treatment of overweight or obese adolescents aged 12 to 17 years. Cochrane database of systematic reviews, 2017(6).
  608. Colquitt, J.L., et al., Diet, physical activity, and behavioural interventions for the treatment of overweight or obesity in preschool children up to the age of 6 years. Cochrane Database of Systematic Reviews, 2016(3).
  609. Tascini, G., et al., Carbohydrate counting in children and adolescents with type 1 diabetes. Nutrients, 2018. 10(1): p. 109.
  610. Silverstein, J., et al., Care of children and adolescents with type 1 diabetes: a statement of the American Diabetes Association. Diabetes care, 2005. 28(1): p. 186-212.
  611. Campbell, M.D., et al., An additional bolus of rapid-acting insulin to normalise postprandial cardiovascular risk factors following a high-carbohydrate high-fat meal in patients with type 1 diabetes: A randomised controlled trial. Diabetes and Vascular Disease Research, 2017. 14(4): p. 336-344.
  612. Karges, B., et al., Association of Insulin Pump Therapy vs Insulin Injection Therapy With Severe Hypoglycemia, Ketoacidosis, and Glycemic Control Among Children, Adolescents, and Young Adults With Type 1 Diabetes. Jama, 2017. 318(14): p. 1358-1366.
  613. Al Hayek, A.A., A.A. Robert, and M.A. Al Dawish, Evaluation of FreeStyle Libre flash glucose monitoring system on glycemic control, health-related quality of life, and fear of hypoglycemia in patients with type 1 diabetes. Clinical Medicine Insights: Endocrinology and Diabetes, 2017. 10: p. 1179551417746957.
  614. Kinderen, N.K.F.b. Geneesmiddelen. Available from: https://www.kinderformularium.nl/geneesmiddelen/.
  615. NDF, Bewegen voor mensen met (een hoog risico op) diabetes type 2. 2018, Nederlandse Diabetes Federatie: Amersfoort.
  616. American Diabetes Association, Prevention of hypoglycemia during exercise in children with type 1 diabetes by suspending basal insulin. Diabetes care, 2006. 29(10): p. 2200-2204.
  617. NDF, Sport en bewegen bij diabetes mellitus. 2000: Leusden.
  618. Voedingscentrum, Voeding en zwangerschap Factsheet. 2015.
  619. Mennitti, L.V., et al., Type of fatty acids in maternal diets during pregnancy and/or lactation and metabolic consequences of the offspring. The Journal of nutritional biochemistry, 2015. 26(2): p. 99-111.
  620. Tieu, J., et al., Dietary advice interventions in pregnancy for preventing gestational diabetes mellitus. Cochrane Database Syst Rev, 2017. 1: p. Cd006674.
  621. Guo, X.Y., et al., Improving the effectiveness of lifestyle interventions for gestational diabetes prevention: a meta-analysis and meta-regression. BJOG : an international journal of obstetrics and gynaecology, 2019. 126(3): p. 311-320.
  622. Song, C., et al., Lifestyle intervention can reduce the risk of gestational diabetes: a meta-analysis of randomized controlled trials. Obes Rev, 2016. 17(10): p. 960-9.
  623. Rogozinska, E., et al., Effects of antenatal diet and physical activity on maternal and fetal outcomes: individual patient data meta-analysis and health economic evaluation. Health Technol Assess, 2017. 21(41): p. 1-158.
  624. Mijatovic-Vukas, J., et al., Associations of Diet and Physical Activity with Risk for Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis. Nutrients, 2018. 10(6).
  625. Shepherd, E., et al., Combined diet and exercise interventions for preventing gestational diabetes mellitus. Cochrane Database Syst Rev, 2017. 11: p. Cd010443.
  626. Zhang, M.-X., et al., Vitamin D Deficiency Increases the Risk of Gestational Diabetes Mellitus: A Meta-Analysis of Observational Studies. Nutrients, 2015. 7(10): p. 8366-8375.
  627. Hu, L., et al., Maternal Vitamin D Status and Risk of Gestational Diabetes: a Meta-Analysis. Cell Physiol Biochem, 2018. 45(1): p. 291-300.
  628. Lu, M., et al., Association between vitamin D status and the risk of gestational diabetes mellitus: a meta-analysis. Archives of gynecology and obstetrics, 2016. 293(5): p. 959-66.
  629. Palacios, C., L.K. Kostiuk, and J.P. Peña‐Rosas, Vitamin D supplementation for women during pregnancy. Cochrane Database of Systematic Reviews, 2019(7).
  630. Perez-Lopez, F.R., et al., Effect of vitamin D supplementation during pregnancy on maternal and neonatal outcomes: a systematic review and meta-analysis of randomized controlled trials. Fertil Steril, 2015. 103(5): p. 1278-88.e4.
  631. Crawford, T.J., et al., Antenatal dietary supplementation with myo-inositol in women during pregnancy for preventing gestational diabetes. Cochrane Database Syst Rev, 2015(12): p. Cd011507.
  632. Vitagliano, A., et al., Inositol for the prevention of gestational diabetes: a systematic review and meta-analysis of randomized controlled trials. Archives of gynecology and obstetrics, 2019. 299(1): p. 55-68.
  633. National Institute for Clinical Excellence, Diabetes in pregnancy: management from preconception to the postnatal period. NICE Guidelines [NG3] Published February, 2015.
  634. Brown, J., et al., Lifestyle interventions for the treatment of women with gestational diabetes. Cochrane Database Syst Rev, 2017. 5: p. Cd011970.
  635. i-WIP, Effect of diet and physical activity based interventions in pregnancy on gestational weight gain and pregnancy outcomes: meta-analysis of individual participant data from randomised trials. Bmj, 2017. 358: p. j3119.
  636. Martis, R., et al., Treatments for women with gestational diabetes mellitus: an overview of Cochrane systematic reviews. Cochrane Database of Systematic Reviews, 2018(8).
  637. Yamamoto, J.M., et al., Gestational Diabetes Mellitus and Diet: A Systematic Review and Meta-analysis of Randomized Controlled Trials Examining the Impact of Modified Dietary Interventions on Maternal Glucose Control and Neonatal Birth Weight. Diabetes Care, 2018. 41(7): p. 1346-1361.
  638. Han, S., et al., Different types of dietary advice for women with gestational diabetes mellitus. Cochrane Database Syst Rev, 2017. 2: p. Cd009275.
  639. Ha, V., et al., The effects of various diets on glycemic outcomes during pregnancy: A systematic review and network meta-analysis. PloS one, 2017. 12(8).
  640. Viana, L.V., J.L. Gross, and M.J. Azevedo, Dietary intervention in patients with gestational diabetes mellitus: a systematic review and meta-analysis of randomized clinical trials on maternal and newborn outcomes. Diabetes Care, 2014. 37(12): p. 3345-55.
  641. Ojo, O., et al., The Effects of a Low GI Diet on Cardiometabolic and Inflammatory Parameters in Patients with Type 2 and Gestational Diabetes: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients, 2019. 11(7).
  642. Wei, J., W. Heng, and J. Gao, Effects of Low Glycemic Index Diets on Gestational Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Clinical Trials. Medicine (Baltimore), 2016. 95(22): p. e3792.
  643. Zhang, R., et al., Effects of low-glycemic-index diets in pregnancy on maternal and newborn outcomes in pregnant women: a meta-analysis of randomized controlled trials. European journal of nutrition, 2018. 57(1): p. 167-177.
  644. Farabi, S.S. and T.L. Hernandez, Low-carbohydrate diets for gestational diabetes. Nutrients, 2019. 11(8): p. 1737.
  645. Desrosiers, T.A., et al., Low carbohydrate diets may increase risk of neural tube defects. Birth defects research, 2018. 110(11): p. 901-909.
  646. Pan, J., et al., Efficacy of probiotic supplement for gestational diabetes mellitus: a systematic review and meta-analysis. The Journal of Maternal-Fetal & Neonatal Medicine, 2019. 32(2): p. 317-323.
  647. Peng, T.R., T.W. Wu, and Y.C. Chao, Effect of Probiotics on the Glucose Levels of Pregnant Women: A Meta-Analysis of Randomized Controlled Trials. Medicina (Kaunas), 2018. 54(5).
  648. Rodrigues, M.R.K., et al., Efficacy of vitamin D supplementation in gestational diabetes mellitus: Systematic review and meta-analysis of randomized trials. PLoS One, 2019. 14(3): p. e0213006.
  649. Jahanjoo, F., et al., Maternal and Neonatal Metabolic Outcomes of Vitamin D Supplementation in Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis. Annals of nutrition & metabolism, 2018. 73(2): p. 145-159.
  650. Ojo, O., et al., The Effect of Vitamin D Supplementation on Glycaemic Control in Women with Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Int J Environ Res Public Health, 2019. 16(10).
  651. Akbari, M., et al., The Effects of Vitamin D Supplementation on Glucose Metabolism and Lipid Profiles in Patients with Gestational Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme, 2017. 49(9): p. 647-653.
  652. Alexopoulos, A.-S., R. Blair, and A.L. Peters, Management of preexisting diabetes in pregnancy: A review. Jama, 2019. 321(18): p. 1811-1819.
  653. Jones, L.V., et al., Techniques of monitoring blood glucose during pregnancy for women with pre-existing diabetes. Cochrane Database Syst Rev, 2019. 5: p. Cd009613.
  654. College Perinatale Zorg, Preconceptie Indicatie Lijst (PIL). 2018.
  655. Garcia-Larsen, V., et al., Diet during pregnancy and infancy and risk of allergic or autoimmune disease: A systematic review and meta-analysis. PLoS Med, 2018. 15(2): p. e1002507.
  656. Horta, B.L. and N.P. de Lima, Breastfeeding and type 2 diabetes: systematic review and meta-analysis. Current diabetes reports, 2019. 19(1): p. 1.
  657. Chowdhury, R., et al., Breastfeeding and maternal health outcomes: a systematic review and meta‐analysis. Acta paediatrica, 2015. 104: p. 96-113.
  658. Horta, B.L., C. Loret de Mola, and C.G. Victora, Long‐term consequences of breastfeeding on cholesterol, obesity, systolic blood pressure and type 2 diabetes: a systematic review and meta‐analysis. Acta paediatrica, 2015. 104: p. 30-37.
  659. Linden, K., et al., Well-being, diabetes management and breastfeeding in mothers with type 1 diabetes–An explorative analysis. Sexual & reproductive healthcare, 2018. 15: p. 77-82.
  660. Voedingscentrum. Alles over gezond eten voor en tijdens de zwangerschap. 2018; Available from: https://www.voedingscentrum.nl/nl/zwanger-en-kind/zwanger.aspx.
  661. Vischer, U.M., et al., The high prevalence of malnutrition in elderly diabetic patients: implications for anti-diabetic drug treatments. Diabet Med, 2010. 27(8): p. 918-24.
  662. Turnbull, P.J. and A.J. Sinclair, Evaluation of nutritional status and its relationship with functional status in older citizens with diabetes mellitus using the mini nutritional assessment (MNA) tool--a preliminary investigation. J Nutr Health Aging, 2002. 6(3): p. 185-9.
  663. Sherifali, D., et al., Diabetes self-management programmes in older adults: a systematic review and meta-analysis. Diabet Med, 2015. 32(11): p. 1404-14.
  664. Weinger, K., E.A. Beverly, and A. Smaldone, Diabetes self-care and the older adult. Western journal of nursing research, 2014. 36(9): p. 1272-1298.
  665. Sircar, M., A. Bhatia, and M. Munshi, Review of hypoglycemia in the older adult: clinical implications and management. Canadian journal of diabetes, 2016. 40(1): p. 66-72.
  666. Wong, C., Avoiding hypoglycaemia: a new target of care for elderly diabetic patients. Hong Kong Med J, 2015. 21(5): p. 444-454.
  667. Hope, S.V., et al., Are we missing hypoglycaemia? Elderly patients with insulin-treated diabetes present to primary care frequently with non-specific symptoms associated with hypoglycaemia. Primary care diabetes, 2018. 12(2): p. 139-146.
  668. Herfst-Raes, I. and B. Hart, Herkennen hypoglykemieën bij oudere diabetespatiënten is lastig. Huisarts en wetenschap, 2017. 60(10): p. 517-519.
  669. Steunpunt Koel. Hypo- en hyperglykaemie bij kwetsbare ouderen. 2019; Available from: https://www.eerstelijnsprotocollen.nl/diabetes/diabetes/modules/10-diabeteszorg-bij-bijzondere-groepen/10-2-diabeteszorg-bij-kwetsbare-ouderen/10-2-1-hypo-en-hyperglykaemie-bij-kwetsbare-ouderen/.
  670. Stanley, K., Nutrition considerations for the growing population of older adults with diabetes. Diabetes Spectrum, 2014. 27(1): p. 29-36.
  671. Murphy, R.A., et al., Adipose tissue, muscle, and function: potential mediators of associations between body weight and mortality in older adults with type 2 diabetes. Diabetes Care, 2014. 37(12): p. 3213-3219.
  672. van Oostrom, S.v.d.A., Daphne; Picavet, Susan; Rietman, Liset; de Bruin, Simone; Spijkerman, Annemieke, Ouderen van nu en straks: zijn er verschillen in kwetsbaarheid?, in De zorg voor morgen begint vandaag. 2015, RIVM.
  673. Bauer, J., et al., Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J Am Med Dir Assoc, 2013. 14(8): p. 542-59.
  674. NDF, Zorg op maat voor ouderen met diabetes. 2019.
  675. Niemer, S., Zorgmodule Voeding. 2012.
  676. Yao, B., et al., Dietary fiber intake and risk of type 2 diabetes: a dose–response analysis of prospective studies. 2014, Springer.
  677. Aune, D., et al., Whole grain and refined grain consumption and the risk of type 2 diabetes: a systematic review and dose–response meta-analysis of cohort studies. European journal of epidemiology, 2013. 28(11): p. 845-858.
  678. Zhao, L.-m., et al., Vitamin D intake and type 2 diabetes risk: a meta-analysis of prospective cohort studies. African Health Sciences, 2013. 13(4): p. 1130-1138.
  679. Li, M., et al., Fruit and vegetable intake and risk of type 2 diabetes mellitus: meta-analysis of prospective cohort studies. BMJ open, 2014. 4(11).
  680. Afshin, A., et al. Consumption of Nuts and Beans and Risk of Incident Coronary Heart Disease, Stroke, and Diabetes Mellitus: A Systematic Review and Meta-analysis. in Circulation. 2013. LIPPINCOTT WILLIAMS & WILKINS 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA.
  681. Feskens, E.J., D. Sluik, and G.J. van Woudenbergh, Meat consumption, diabetes, and its complications. Current diabetes reports, 2013. 13(2): p. 298-306.
  682. Gao, D., et al., Dairy products consumption and risk of type 2 diabetes: systematic review and dose-response meta-analysis. PloS one, 2013. 8(9).
  683. Sochol, K.M., et al., The Effects of Dairy Intake on Insulin Resistance: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Nutrients, 2019. 11(9).
  684. Mitri, J., et al., 754-P: Full-Fat and Low-Fat Dairy, within the Same Caloric Intake, Have Similar Impact on A1C and Cardiovascular Risk Factors: A Randomized Controlled Study. 2019, Am Diabetes Assoc.
  685. Ding, M., et al., Caffeinated and decaffeinated coffee consumption and risk of type 2 diabetes: a systematic review and a dose-response meta-analysis. Diabetes care, 2014. 37(2): p. 569-586.
  686. Jiang, X., D. Zhang, and W. Jiang, Coffee and caffeine intake and incidence of type 2 diabetes mellitus: a meta-analysis of prospective studies. European journal of nutrition, 2014. 53(1): p. 25-38.
  687. Salas-Salvado, J., et al., Reduction in the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care, 2011. 34(1): p. 14-9.
  688. Kempf, K., et al., Individualized meal replacement therapy improves clinically relevant long-term glycemic control in poorly controlled type 2 diabetes patients. Nutrients, 2018. 10(8): p. 1022.